cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384106 Numbers representable as the sum of 2 cubes in at least 2 ways generated by a parameterized formula involving (7+4*sqrt(3))^n and (7-4*sqrt(3))^n.

Original entry on oeis.org

1009736, 2714690888, 7334904115448, 19818905563705976, 53550675461437475048, 144693905277386048024168, 390962878508814502873889816, 1056203940519850679825934312168, 2853755704387709706549646191448888, 7710144396612746633517746345789261976
Offset: 1

Views

Author

Jamal Agbanwa, May 19 2025

Keywords

Comments

A rapidly growing sequence of integers, each equal to x(n)^3 + y(n)^3 = u(n)^3 + w(n)^3 for distinct positive integers x(n), y(n), u(n), w(n), generated from a parameterized expression. Values omit small classical examples (like 1729) and begin at much larger values and is therefore a parameterized subset of solutions to A001235.

Examples

			For n = 7, a(7) = x(n)^3 + y(n)^3 = ((-6 + (15 - 7*sqrt(3))*(7 - 4*sqrt(3))^7 + (15 + 7*sqrt(3))*(7 + 4*sqrt(3))^7)/4 + 3)^3 + ((-18 + (7 - 5*sqrt(3))*(7 - 4*sqrt(3))^7 + (7 + 5*sqrt(3))*(7 + 4*sqrt(3))^7)/4)^3 = 390962878508814502873889816.
		

Crossrefs

Subset of A001235.

Formula

a(n) = x(n)^3 + y(n)^3 = u(n)^3 + w(n)^3 where:
x(n) = (-6 + (15 - 7*sqrt(3))*(7 - 4*sqrt(3))^n + (15 + 7*sqrt(3))*(7 + 4*sqrt(3))^n)/4 + 3,
y(n) = (-18 + (7 - 5*sqrt(3))*(7 - 4*sqrt(3))^n + (7 + 5*sqrt(3))*(7 + 4*sqrt(3))^n)/4,
u(n) = (-6 + (15 - 7*sqrt(3))*(7 - 4*sqrt(3))^n + (15 + 7*sqrt(3))*(7 + 4*sqrt(3))^n)/4, abd
w(n) = (-18 + (7 - 5*sqrt(3))*(7 - 4*sqrt(3))^n + (7 + 5*sqrt(3))*(7 + 4*sqrt(3))^n)/4 + 9.