A384106 Numbers representable as the sum of 2 cubes in at least 2 ways generated by a parameterized formula involving (7+4*sqrt(3))^n and (7-4*sqrt(3))^n.
1009736, 2714690888, 7334904115448, 19818905563705976, 53550675461437475048, 144693905277386048024168, 390962878508814502873889816, 1056203940519850679825934312168, 2853755704387709706549646191448888, 7710144396612746633517746345789261976
Offset: 1
Keywords
Examples
For n = 7, a(7) = x(n)^3 + y(n)^3 = ((-6 + (15 - 7*sqrt(3))*(7 - 4*sqrt(3))^7 + (15 + 7*sqrt(3))*(7 + 4*sqrt(3))^7)/4 + 3)^3 + ((-18 + (7 - 5*sqrt(3))*(7 - 4*sqrt(3))^7 + (7 + 5*sqrt(3))*(7 + 4*sqrt(3))^7)/4)^3 = 390962878508814502873889816.
Links
- Jamal Agbanwa, A Closed-Form Symbolic Generator: A^n + B^n = C^n + D^n, n = 2, 3, Preprint, 2025. See also arXiv:2506.19173 [math.GM], 2025, p. 8.
Formula
a(n) = x(n)^3 + y(n)^3 = u(n)^3 + w(n)^3 where:
x(n) = (-6 + (15 - 7*sqrt(3))*(7 - 4*sqrt(3))^n + (15 + 7*sqrt(3))*(7 + 4*sqrt(3))^n)/4 + 3,
y(n) = (-18 + (7 - 5*sqrt(3))*(7 - 4*sqrt(3))^n + (7 + 5*sqrt(3))*(7 + 4*sqrt(3))^n)/4,
u(n) = (-6 + (15 - 7*sqrt(3))*(7 - 4*sqrt(3))^n + (15 + 7*sqrt(3))*(7 + 4*sqrt(3))^n)/4, abd
w(n) = (-18 + (7 - 5*sqrt(3))*(7 - 4*sqrt(3))^n + (7 + 5*sqrt(3))*(7 + 4*sqrt(3))^n)/4 + 9.
Comments