This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384119 #6 May 20 2025 12:52:02 %S A384119 1,1,1,1,1,1,1,2,2,1,1,3,6,3,1,1,4,9,9,4,1,1,5,16,48,16,5,1,1,6,25,64, %T A384119 64,25,6,1,1,7,36,125,488,125,36,7,1,1,8,49,216,625,625,216,49,8,1,1, %U A384119 9,64,343,1296,6130,1296,343,64,9,1,1,10,81,512,2401,7776,7776,2401,512,81,10,1 %N A384119 Array read by antidiagonals: T(n,m) is the number of minimum dominating sets in the n X m rook graph K_n X K_m. %C A384119 For m <= n, the minimum size of a dominating set is m. When m < n, solutions have exactly one vertex in each column. In the special case of n = m, solutions either have exactly one vertex in each column or have exactly one vertex in each row. %H A384119 Andrew Howroyd, <a href="/A384119/b384119.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals) %H A384119 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimumDominatingSet.html">Minimum Dominating Set</a>. %H A384119 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RookGraph.html">Rook Graph</a>. %F A384119 T(n,m) = T(m,n). %F A384119 T(n,m) = n^m for m < n. %e A384119 Array begins: %e A384119 ======================================================= %e A384119 n\m | 0 1 2 3 4 5 6 7 8 ... %e A384119 ----+-------------------------------------------------- %e A384119 0 | 1 1 1 1 1 1 1 1 1 ... %e A384119 1 | 1 1 2 3 4 5 6 7 8 ... %e A384119 2 | 1 2 6 9 16 25 36 49 64 ... %e A384119 3 | 1 3 9 48 64 125 216 343 512 ... %e A384119 4 | 1 4 16 64 488 625 1296 2401 4096 ... %e A384119 5 | 1 5 25 125 625 6130 7776 16807 32768 ... %e A384119 6 | 1 6 36 216 1296 7776 92592 117649 262144 ... %e A384119 7 | 1 7 49 343 2401 16807 117649 1642046 2097152 ... %e A384119 8 | 1 8 64 512 4096 32768 262144 2097152 33514112 ... %e A384119 ... %o A384119 (PARI) T(n,m) = {if(n<=m, m^n) + if(m<=n, n^m) - if(m==n, n!)} %Y A384119 Main diagonal is A248744. %Y A384119 Cf. A079901, A287274, A290632. %K A384119 nonn,tabl %O A384119 0,8 %A A384119 _Andrew Howroyd_, May 20 2025