cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384121 Array read by antidiagonals: T(n,m) is the number of dominating sets in the n X m rook complement graph.

This page as a plain text file.
%I A384121 #6 May 20 2025 19:16:08
%S A384121 1,1,1,1,1,1,1,1,1,1,1,1,9,1,1,1,1,39,39,1,1,1,1,183,421,183,1,1,1,1,
%T A384121 833,3825,3825,833,1,1,1,1,3629,32047,64727,32047,3629,1,1,1,1,15291,
%U A384121 260355,1046425,1046425,260355,15291,1,1,1,1,63051,2092909,16771879,33548731,16771879,2092909,63051,1,1
%N A384121 Array read by antidiagonals: T(n,m) is the number of dominating sets in the n X m rook complement graph.
%C A384121 Non-dominating sets are just those that are contained in the union of a single row and column minus the intersecting vertex.
%H A384121 Andrew Howroyd, <a href="/A384121/b384121.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals)
%H A384121 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DominatingSet.html">Dominating Set</a>.
%H A384121 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RookComplementGraph.html">Rook Complement Graph</a>.
%F A384121 T(n,m) = 2^(n*m) - n*(2^m-2) - m*(2^n-2) + n*m - n*m*(2^(m-1)-1)*(2^(n-1)-1) + n*(n-1)*m*(m-1)/2 - 1 for n > 1, m > 1.
%F A384121 T(n,m) = T(m,n).
%e A384121 Array begins:
%e A384121 ===============================================================
%e A384121 n\m | 0 1     2       3         4           5             6 ...
%e A384121 ----+----------------------------------------------------------
%e A384121   0 | 1 1     1       1         1           1             1 ...
%e A384121   1 | 1 1     1       1         1           1             1 ...
%e A384121   2 | 1 1     9      39       183         833          3629 ...
%e A384121   3 | 1 1    39     421      3825       32047        260355 ...
%e A384121   4 | 1 1   183    3825     64727     1046425      16771879 ...
%e A384121   5 | 1 1   833   32047   1046425    33548731    1073727713 ...
%e A384121   6 | 1 1  3629  260355  16771879  1073727713   68719441881 ...
%e A384121   7 | 1 1 15291 2092909 268422785 34359704907 4398046428559 ...
%e A384121   ...
%o A384121 (PARI) T(n,m) = if(n<=1 || m<=1, 1, 2^(n*m) - n*(2^m-2) - m*(2^n-2) + n*m - n*m*(2^(m-1)-1)*(2^(n-1)-1) + n*(n-1)*m*(m-1)/2 - 1)
%Y A384121 Main diagonal is A292073.
%Y A384121 Columns 0 and 1 are A000012.
%Y A384121 Column 2 is A287063, n > 1.
%Y A384121 Cf. A384120 (independent sets), A384122, A384123.
%K A384121 nonn,tabl
%O A384121 0,13
%A A384121 _Andrew Howroyd_, May 20 2025