cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384122 Array read by antidiagonals: T(n,m) is the number of minimum dominating sets in the n X m rook complement graph.

This page as a plain text file.
%I A384122 #9 May 22 2025 16:57:42
%S A384122 1,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,3,3,1,1,1,1,4,48,4,1,1,1,1,5,100,
%T A384122 100,5,1,1,1,1,6,185,240,185,6,1,1,1,1,7,306,480,480,306,7,1,1,1,1,8,
%U A384122 469,840,1000,840,469,8,1,1,1,1,9,680,1344,1800,1800,1344,680,9,1,1
%N A384122 Array read by antidiagonals: T(n,m) is the number of minimum dominating sets in the n X m rook complement graph.
%C A384122 For n >= 3, m >= 3, the minimum size of a dominating set is 3.
%H A384122 Andrew Howroyd, <a href="/A384122/b384122.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals)
%H A384122 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimumDominatingSet.html">Minimum Dominating Set</a>.
%H A384122 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RookComplementGraph.html">Rook Complement Graph</a>.
%F A384122 T(n,m) = 4*binomial(n,2)*binomial(m,2) + 6*binomial(n,3)*binomial(m,3) for n >= 4, m >= 4.
%F A384122 T(n,m) = T(m,n).
%F A384122 T(n,0) = T(n,1) = 1.
%e A384122 Array begins:
%e A384122 ===============================================
%e A384122 n\m | 0 1 2   3    4    5    6     7     8 ...
%e A384122 ----+------------------------------------------
%e A384122   0 | 1 1 1   1    1    1    1     1     1 ...
%e A384122   1 | 1 1 1   1    1    1    1     1     1 ...
%e A384122   2 | 1 1 4   3    4    5    6     7     8 ...
%e A384122   3 | 1 1 3  48  100  185  306   469   680 ...
%e A384122   4 | 1 1 4 100  240  480  840  1344  2016 ...
%e A384122   5 | 1 1 5 185  480 1000 1800  2940  4480 ...
%e A384122   6 | 1 1 6 306  840 1800 3300  5460  8400 ...
%e A384122   7 | 1 1 7 469 1344 2940 5460  9114 14112 ...
%e A384122   8 | 1 1 8 680 2016 4480 8400 14112 21952 ...
%e A384122    ...
%o A384122 (PARI) T(n,m) = if(n<=2||m<=2, if(n<=1||m<=1, 1, if(n==2,m)+if(m==2,n)), 4*binomial(n,2)*binomial(m,2) + 6*binomial(n,3)*binomial(m,3) + if(n==3,m) + if(m==3,n))
%Y A384122 Main diagonal is A292074.
%Y A384122 Column 3 is A090197(n-1), n >= 4.
%Y A384122 Column 4 is A272871(n), n >= 4.
%Y A384122 Cf. A384121, A384123.
%K A384122 nonn,tabl
%O A384122 0,13
%A A384122 _Andrew Howroyd_, May 20 2025