This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384125 #12 May 23 2025 01:09:30 %S A384125 0,1,1,3,4,3,6,9,9,6,10,16,18,16,10,15,25,30,30,25,15,21,36,45,48,45, %T A384125 36,21,28,49,63,70,70,63,49,28,36,64,84,96,100,96,84,64,36,45,81,108, %U A384125 126,135,135,126,108,81,45,55,100,135,160,175,180,175,160,135,100,55 %N A384125 Array read by antidiagonals: T(n,m) is the number of edges in the n X m rook graph K_n X K_m. %H A384125 Andrew Howroyd, <a href="/A384125/b384125.txt">Table of n, a(n) for n = 1..1275</a> (first 50 antidiagonals) %H A384125 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EdgeCount.html">Edge Count</a>. %H A384125 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RookGraph.html">Rook Graph</a>. %F A384125 T(n,m) = n*binomial(m,2) + m*binomial(n,2). %F A384125 T(n,m) = binomial(n*m,2) - 2*binomial(n,2)*binomial(m,2). %F A384125 T(n,m) = T(m,n). %e A384125 Array begins: %e A384125 ======================================= %e A384125 n\m | 1 2 3 4 5 6 7 8 ... %e A384125 ----+---------------------------------- %e A384125 1 | 0 1 3 6 10 15 21 28 ... %e A384125 2 | 1 4 9 16 25 36 49 64 ... %e A384125 3 | 3 9 18 30 45 63 84 108 ... %e A384125 4 | 6 16 30 48 70 96 126 160 ... %e A384125 5 | 10 25 45 70 100 135 175 220 ... %e A384125 6 | 15 36 63 96 135 180 231 288 ... %e A384125 7 | 21 49 84 126 175 231 294 364 ... %e A384125 8 | 28 64 108 160 220 288 364 448 ... %e A384125 ... %t A384125 Table[#*Binomial[m, 2] + m*Binomial[#, 2] &[n - m + 1], {n, 11}, {m, n}] // Flatten (* _Michael De Vlieger_, May 22 2025 *) %o A384125 (PARI) T(n,m) = n*binomial(m,2) + m*binomial(n,2) %Y A384125 Main diagonal is A045991. %Y A384125 Columns 1..6 are A000217(n-1), A000290, A045943, A054000, A269457(n-1), A067707. %Y A384125 Cf. A003991 (number of vertices), A360855 (triangles), A384120 (all cliques). %K A384125 nonn,tabl,easy %O A384125 1,4 %A A384125 _Andrew Howroyd_, May 20 2025