This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384133 #11 May 30 2025 01:07:12 %S A384133 1,2,1,5,5,2,14,21,12,2,42,84,56,14,2,132,330,240,72,16,2,429,1287, %T A384133 990,330,90,18,2,1430,5005,4004,1430,440,110,20,2,4862,19448,16016, %U A384133 6006,2002,572,132,22,2,16796,75582,63648,24752,8736,2730,728,156,24,2 %N A384133 Triangle read by rows: T(n,k) is the number of linear intervals of height k in the Tamari lattice Tam_n (0 <= k < n). %C A384133 An interval is linear of height k if it is isomorphic to the total order on k+1 elements. %H A384133 Clément Chenevière, <a href="https://arxiv.org/abs/2209.00418">Linear Intervals in the Tamari and the Dyck Lattices and in the alt-Tamari Posets</a>, arXiv:2209.00418 [math.CO], 2022. %F A384133 Row sums give A344136. %F A384133 T(n,0) = C(2*n,n)/(n+1), T(n,1) = C(2*n-1,n-2) and T(n,k) = 2*C(2*n-k,n-k-1) if k>1. %e A384133 Triangle begins: %e A384133 1; %e A384133 2, 1; %e A384133 5, 5, 2; %e A384133 14, 21, 12, 2; %e A384133 42, 84, 56, 14, 2; %e A384133 132, 330, 240, 72, 16, 2; %e A384133 ... %t A384133 T[n_,k_]:=If[k==0, Binomial[2*n,n]/(n+1), If[k==1, Binomial[2*n-1,n-2], 2*Binomial[2*n-k,n-k-1]]]; Table[T[n,k],{n,10},{k,0,n-1}]//Flatten (* _Stefano Spezia_, May 26 2025 *) %Y A384133 Cf. A000108, A000260, A344136. %K A384133 nonn,tabl %O A384133 1,2 %A A384133 _Ludovic Schwob_, May 20 2025