cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384144 Decimal expansion of the volume of an elongated pentagonal cupola with unit edge.

This page as a plain text file.
%I A384144 #9 May 23 2025 10:14:11
%S A384144 1,0,0,1,8,2,5,4,1,6,1,2,7,1,3,2,6,6,3,7,3,6,5,1,7,5,5,5,2,5,7,9,7,9,
%T A384144 2,0,5,0,3,1,0,5,0,0,9,3,1,9,1,8,8,3,1,5,5,0,4,4,5,1,5,5,4,5,6,2,1,0,
%U A384144 8,3,8,8,3,8,3,2,9,5,9,7,2,2,9,0,7,9,4,2,7,2
%N A384144 Decimal expansion of the volume of an elongated pentagonal cupola with unit edge.
%C A384144 The elongated pentagonal cupola is Johnson solid J_20.
%H A384144 Paolo Xausa, <a href="/A384144/b384144.txt">Table of n, a(n) for n = 2..10000</a>
%H A384144 Wikipedia, <a href="https://en.wikipedia.org/wiki/Elongated_pentagonal_cupola">Elongated pentagonal cupola</a>.
%F A384144 Equals (5 + 4*sqrt(5) + 15*sqrt(5 + 2*sqrt(5)))/6 = (5 + A010532 + 15*sqrt(5 + A010476))/6.
%F A384144 Equals the largest root of 324*x^4 - 1080*x^3 - 20340*x^2 - 18600*x + 49975.
%e A384144 10.0182541612713266373651755525797920503105009319...
%t A384144 First[RealDigits[(5 + Sqrt[80] + 15*Sqrt[5 + Sqrt[20]])/6, 10, 100]] (* or *)
%t A384144 First[RealDigits[PolyhedronData["J20", "Volume"], 10, 100]]
%Y A384144 Cf. A179591 (surface area - 10).
%Y A384144 Cf. A010476, A010532, A384138, A384140, A384213.
%K A384144 nonn,cons,easy
%O A384144 2,5
%A A384144 _Paolo Xausa_, May 22 2025