This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384147 #22 Jun 03 2025 19:08:29 %S A384147 1,1,2,1,2,3,1,8,3,4,1,20,3,4,5,1,56,27,4,5,6,1,152,99,4,5,6,7,1,416, %T A384147 387,64,5,6,7,8,1,1136,1539,304,5,6,7,8,9,1,3104,6075,1504,125,6,7,8, %U A384147 9,10,1,8480,24003,7504,725,6,7,8,9,10,11,1,23168,94851,37504,4325,216,7,8,9,10,11,12 %N A384147 Array A(n,k) = n*(A(n-1,k)+A(n-2,k)+...+A(n-k,k)), where A(n,k) = n if n <= k, read by antidiagonals with n >= 1 and k >= 1. %C A384147 Taking only the triangle where 1<=n<=k and reading by rows yields A002024. %H A384147 Jason Bard, <a href="/A384147/b384147.txt">Table of n, a(n) for n = 1..5050</a> %F A384147 A(m,m+1) = m^3 for all m >= 1. %F A384147 A(m,m+2) = m^4 + m^3 - m^2 for all m >= 1. %F A384147 A(m,m+3) = m^5 + 2m^4 - 2m^2 for all m >= 1. %F A384147 A(m,m+4) = m^6 + 3m^5 + 2m^4 - 2m^3 - 3m^2 for all m >= 3. %F A384147 A(m,m+5) = m^7 + 4m^6 + 5m^5 - 5m^3 - 4m^2 for all m >= 4. %F A384147 ... %F A384147 A(m,m+k) ~ O(m^(k+2)) for all m >= k-1 may be derived similarly. %e A384147 Top left corner of the array: %e A384147 1 1 1 1 1 1 1 1 1 1 1 %e A384147 2 2 8 20 56 152 416 1136 3104 8480 23168 %e A384147 3 3 3 27 99 387 1539 6075 24003 94851 374787 %e A384147 4 4 4 4 64 304 1504 7504 37504 187264 935104 %e A384147 5 5 5 5 5 125 725 4325 25925 155525 933125 %e A384147 6 6 6 6 6 6 216 1476 10296 72036 504216 %e A384147 7 7 7 7 7 7 7 343 2695 21511 172039 %e A384147 8 8 8 8 8 8 8 8 512 4544 40832 %e A384147 9 9 9 9 9 9 9 9 9 729 7209 %e A384147 10 10 10 10 10 10 10 10 10 10 1000 %e A384147 ... %t A384147 nmax = 100; AntiDiagonalFlatten[matrix_] := Module[{n = Length@matrix}, Flatten[Table[matrix[[i, s - i]], {s, 2, 2 n}, {i, Max[1, s - n], Min[n, s - 1]}], 1]]; A384147 = AntiDiagonalFlatten[Table[LinearRecurrence[ConstantArray[n, n], ConstantArray[n, n], {1, nmax}], {n, 1, nmax}]][[;; nmax*(nmax + 1)/2]] %Y A384147 Cf. A000012 (row 1), A080040 (row 2). %Y A384147 Cf. A000578, A002024, A002260. %K A384147 nonn,tabl %O A384147 1,3 %A A384147 _Jason Bard_, May 25 2025