This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384161 #24 Jun 09 2025 21:01:05 %S A384161 4,7,3,11,13,9,131,9,15,3,31,27,3,13,7,3,31,131,15,17,13,5,21,29,3,33, %T A384161 3,7,11,43,5,41,43,49,27,49,37,85,5,41,3,41,65,51,13,29,65,5,89,3,27, %U A384161 75,3,73,3,3,5,3,23,9,7,3,71,55,35,7,71,71,19,33,15 %N A384161 Sum of next a(n) successive prime cubes is prime. %C A384161 Group the primes such that the sum of cubes of members of each group is a prime, and each successive group is as short as possible. %H A384161 Abhiram R Devesh, <a href="/A384161/b384161.txt">Table of n, a(n) for n = 1..10000</a> %e A384161 Primes, their cubes and the lengths of the blocks when summed becomes a prime. %e A384161 Primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 %e A384161 Cubes 8, 27, 125, 343, 1331, 2197, 4913, 6859, 12167, 24389, 29791, 50653, 68921 %e A384161 \--------------/ \------------------------------------------/ \---... %e A384161 Sum 503 81647 %e A384161 a(n) = 4 7 %p A384161 i:= 0: p:= 0: t:= 0: count:= 0: R:= NULL: %p A384161 while count < 100 do %p A384161 p:= nextprime(p); %p A384161 i:= i+1; %p A384161 t:= t + p^3; %p A384161 if isprime(t) then %p A384161 R:= R, i; count:= count+1; i:= 0; t:= 0; %p A384161 fi %p A384161 od: %p A384161 R; # _Robert Israel_, May 25 2025 %t A384161 p=1;s={};Do[c=0;sm=0;While[!PrimeQ[sm],sm=sm+Prime[p]^3;p++;c++];AppendTo[s,c],{n,71}];s (* _James C. McMahon_, Jun 09 2025 *) %o A384161 (Python) %o A384161 from itertools import count, islice %o A384161 from sympy import isprime, nextprime %o A384161 def agen(): # generator of terms %o A384161 s, i, p = 0, 1, 2 %o A384161 while True: %o A384161 while not(isprime(s:=s+p**3)): i, p = i+1, nextprime(p) %o A384161 yield i %o A384161 s, i, p = 0, 1, nextprime(p) %o A384161 print(list(islice(agen(), 71))) # _Michael S. Branicky_, May 23 2025 %Y A384161 Cf. A030078, A073684 (sum of successive primes), A383504 (sum of successive prime squares). %K A384161 nonn %O A384161 1,1 %A A384161 _Abhiram R Devesh_, May 20 2025