This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384163 #18 May 22 2025 09:39:24 %S A384163 1,2,28,648,20944,869440,44089920,2641533440,182573036800, %T A384163 14299419214080,1251598943795200,121073405444992000, %U A384163 12826824167930572800,1477015178613438464000,183679785389526871244800,24533610049517447983104000,3502810763000490499317760000,532374290389646285405913088000 %N A384163 a(n) = Product_{k=0..n-1} (2*n+3*k). %H A384163 Vincenzo Librandi, <a href="/A384163/b384163.txt">Table of n, a(n) for n = 0..200</a> %F A384163 a(n) = 3^n * RisingFactorial(2*n/3,n). %F A384163 a(n) = n! * [x^n] 1/(1 - 3*x)^(2*n/3). %F A384163 a(n) = (2/5) * 3^n * n! * binomial(5*n/3,n) for n > 0. %t A384163 a[n_]:=Product[(2*n+3*k),{k,0,n-1}]; Table[a[n],{n,0,15}] (* _Vincenzo Librandi_, May 22 2025 *) %o A384163 (PARI) a(n) = prod(k=0, n-1, 2*n+3*k); %o A384163 (Sage) %o A384163 def a(n): return 3^n*rising_factorial(2*n/3, n) %o A384163 (Magma) [1] cat [&*[(2*n+3*k): k in [0..n-1]]: n in [1..16]]; // _Vincenzo Librandi_, May 22 2025 %Y A384163 Cf. A352601. %K A384163 nonn,easy %O A384163 0,2 %A A384163 _Seiichi Manyama_, May 21 2025