cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384172 a(n) = 4^n * n! * binomial(7*n/4,n) * Sum_{k=1..n} 1/(3*n+4*k).

This page as a plain text file.
%I A384172 #10 May 21 2025 06:40:14
%S A384172 1,24,851,40832,2483269,183241728,15912395295,1590131687424,
%T A384172 179766351690345,22685041361848320,3161081216499580395,
%U A384172 482101740659382681600,79876921394710650447405,14287114673531430042009600,2743817201103924825303993975,563131793021994402478188134400
%N A384172 a(n) = 4^n * n! * binomial(7*n/4,n) * Sum_{k=1..n} 1/(3*n+4*k).
%F A384172 a(n) = Sum_{k=0..n} k * (3*n+4)^(k-1) * 4^(n-k) * |Stirling1(n,k)|.
%F A384172 a(n) = n! * [x^n] ( -log(1 - 4*x)/(4 * (1 - 4*x)^(3*n/4+1)) ).
%o A384172 (PARI) a(n) = sum(k=0, n, k*(3*n+4)^(k-1)*4^(n-k)*abs(stirling(n, k, 1)));
%Y A384172 Cf. A384137, A384171.
%Y A384172 Cf. A384166.
%K A384172 nonn
%O A384172 1,2
%A A384172 _Seiichi Manyama_, May 21 2025