A384173 Number of Hamiltonian paths from NW to SW corners in an n X n grid reduced for symmetry, i.e., where reflection about the x-axis is not counted as distinct.
1, 1, 1, 5, 43, 897, 44209, 4467927, 1043906917, 506673590576, 555799435739334, 1284472450789974196, 6625529679919810063544, 72597408139909172033687226, 1762085630816152820582838187465, 91326629994353561722347679614188407
Offset: 1
Examples
The two paths of A000532(3) = 2 are equivalent under reflection about the x-axis: + - + - + | + - + + | | | + + - + + + - + | | | + - + + | + - + - +
References
- J. L. Jacobsen, Exact enumeration of Hamiltonian circuits, walks and chains in two and three dimensions, J. Phys. A: Math. Theor. 40 (2007) 14667-14678.
- J.-M. Mayer, C. Guez and J. Dayantis, Exact computer enumeration of the number of Hamiltonian paths in small square plane lattices, Physical Review B, Vol. 42 Number 1, 1990.
Links
- Oliver R. Bellwood, Heitor P. Casagrande, and William J. Munro, Fractal Path Strategies for Efficient 2D DMRG Simulations, arXiv:2507.11820 [cond-mat.str-el], 2025. See p. 4.
Formula
a(n) = A000532(n)/2 for odd n.
Comments