This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384175 #12 Jun 18 2025 23:19:55 %S A384175 1,2,4,7,13,24,44,77,135,236,412,713,1215,2048,3434,5739,9559,15850, %T A384175 26086,42605,69133,111634,179602,288069,460553,733370,1162356,1833371, %U A384175 2878621,4501856,7016844,10905449,16904399,26132460,40279108,61885621,94766071,144637928 %N A384175 Number of subsets of {1..n} with all distinct lengths of maximal runs (increasing by 1). %H A384175 Christian Sievers, <a href="/A384175/b384175.txt">Table of n, a(n) for n = 0..1000</a> %e A384175 The subset {2,3,5,6,7,9} has maximal runs ((2,3),(5,6,7),(9)), with lengths (2,3,1), so is counted under a(9). %e A384175 The a(0) = 1 through a(4) = 13 subsets: %e A384175 {} {} {} {} {} %e A384175 {1} {1} {1} {1} %e A384175 {2} {2} {2} %e A384175 {1,2} {3} {3} %e A384175 {1,2} {4} %e A384175 {2,3} {1,2} %e A384175 {1,2,3} {2,3} %e A384175 {3,4} %e A384175 {1,2,3} %e A384175 {1,2,4} %e A384175 {1,3,4} %e A384175 {2,3,4} %e A384175 {1,2,3,4} %t A384175 Table[Length[Select[Subsets[Range[n]],UnsameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}] %o A384175 (PARI) lista(n)={my(o=(1-x^(n+1))/(1-x)*O(y^(n+2)),p=prod(i=1,n,1+o+x*y^(i+1)/(1-y),1/(1-y)));p=subst(serlaplace(p),x,1);Vec(p-1)} \\ _Christian Sievers_, Jun 18 2025 %Y A384175 For equal instead of distinct lengths we have A243815. %Y A384175 These subsets are ranked by A328592. %Y A384175 The complement is counted by A384176. %Y A384175 For anti-runs instead of runs we have A384177, ranks A384879. %Y A384175 For partitions instead of subsets we have A384884, A384178, A384886, A384880. %Y A384175 For permutations instead of subsets we have A384891, equal instead of distinct A384892. %Y A384175 A034839 counts subsets by number of maximal runs, for strict partitions A116674. %Y A384175 A098859 counts Wilf partitions (distinct multiplicities), complement A336866. %Y A384175 A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905. %Y A384175 Cf. A000009, A010027, A044813, A047993, A242882, A325325, A329739, A351202, A383013, A384889, A384890. %K A384175 nonn %O A384175 0,2 %A A384175 _Gus Wiseman_, Jun 16 2025 %E A384175 a(21) and beyond from _Christian Sievers_, Jun 18 2025