This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384176 #7 Jun 17 2025 09:18:05 %S A384176 0,0,0,1,3,8,20,51,121,276,612,1335,2881,6144,12950,27029,55977, %T A384176 115222,236058,481683,979443 %N A384176 Number of subsets of {1..n} without all distinct lengths of maximal runs (increasing by 1). %e A384176 The subset {1,3,4,8,9} has maximal runs ((1),(3,4),(8,9)), with lengths (1,2,2), so is counted under a(10). %e A384176 The a(0) = 0 through a(6) = 20 subsets: %e A384176 . . . {1,3} {1,3} {1,3} {1,3} %e A384176 {1,4} {1,4} {1,4} %e A384176 {2,4} {1,5} {1,5} %e A384176 {2,4} {1,6} %e A384176 {2,5} {2,4} %e A384176 {3,5} {2,5} %e A384176 {1,3,5} {2,6} %e A384176 {1,2,4,5} {3,5} %e A384176 {3,6} %e A384176 {4,6} %e A384176 {1,3,5} %e A384176 {1,3,6} %e A384176 {1,4,6} %e A384176 {2,4,6} %e A384176 {1,2,4,5} %e A384176 {1,2,4,6} %e A384176 {1,2,5,6} %e A384176 {1,3,4,6} %e A384176 {1,3,5,6} %e A384176 {2,3,5,6} %t A384176 Table[Length[Select[Subsets[Range[n]],!UnsameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}] %Y A384176 For equal instead of distinct lengths the complement is A243815. %Y A384176 These subsets are ranked by the non-members of A328592. %Y A384176 The complement is counted by A384175. %Y A384176 For strict partitions instead of subsets see A384178, A384884, A384886, A384880. %Y A384176 For permutations instead of subsets see A384891, A384892, A010027. %Y A384176 A034839 counts subsets by number of maximal runs, for strict partitions A116674. %Y A384176 A098859 counts Wilf partitions (distinct multiplicities), complement A336866. %Y A384176 A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905. %Y A384176 Cf. A000009, A044813, A242882, A325325, A329739, A351202, A383013, A384177, A384889, A384890. %K A384176 nonn,more %O A384176 0,5 %A A384176 _Gus Wiseman_, Jun 16 2025