This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384177 #13 Jun 18 2025 23:18:43 %S A384177 1,2,3,5,10,19,35,62,109,197,364,677,1251,2288,4143,7443,13318,23837, %T A384177 42809,77216,139751,253293,458800,829237,1494169,2683316,4804083, %U A384177 8580293,15301324,27270061,48607667,86696300,154758265,276453311,494050894,882923051 %N A384177 Number of subsets of {1..n} with all distinct lengths of maximal anti-runs (increasing by more than 1). %H A384177 Christian Sievers, <a href="/A384177/b384177.txt">Table of n, a(n) for n = 0..1000</a> %e A384177 The subset {1,2,4,5,7,10} has maximal anti-runs ((1),(2,4),(5,7,10)), with lengths (1,2,3), so is counted under a(10). %e A384177 The a(0) = 1 through a(5) = 19 subsets: %e A384177 {} {} {} {} {} {} %e A384177 {1} {1} {1} {1} {1} %e A384177 {2} {2} {2} {2} %e A384177 {3} {3} {3} %e A384177 {1,3} {4} {4} %e A384177 {1,3} {5} %e A384177 {1,4} {1,3} %e A384177 {2,4} {1,4} %e A384177 {1,2,4} {1,5} %e A384177 {1,3,4} {2,4} %e A384177 {2,5} %e A384177 {3,5} %e A384177 {1,2,4} %e A384177 {1,2,5} %e A384177 {1,3,4} %e A384177 {1,3,5} %e A384177 {1,4,5} %e A384177 {2,3,5} %e A384177 {2,4,5} %t A384177 Table[Length[Select[Subsets[Range[n]],UnsameQ@@Length/@Split[#,#2!=#1+1&]&]],{n,0,10}] %o A384177 (PARI) lista(n)={my(o=(1-x^(n+1))/(1-x)*O(y*y^n),p=prod(i=1,(n+1)\2,1+o+x*y^(2*i-1)/(1-y)^(i-1)));p=subst(serlaplace(p),x,1);Vec((p-y)/(1-y)^2)} \\ _Christian Sievers_, Jun 18 2025 %Y A384177 For runs instead of anti-runs we have A384175, complement A384176. %Y A384177 These subsets are ranked by A384879. %Y A384177 For strict partitions instead of subsets we have A384880, see A384178, A384884, A384886. %Y A384177 For equal instead of distinct lengths we have A384889, for runs A243815. %Y A384177 A034839 counts subsets by number of maximal runs, for strict partitions A116674. %Y A384177 A098859 counts Wilf partitions (distinct multiplicities), complement A336866. %Y A384177 A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905. %Y A384177 Cf. A000009, A010027, A044813, A047993, A106529, A123513, A242882, A325325, A328592, A329739, A351202, A384890. %K A384177 nonn %O A384177 0,2 %A A384177 _Gus Wiseman_, Jun 16 2025 %E A384177 a(21) and beyond from _Christian Sievers_, Jun 18 2025