This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384179 #5 May 24 2025 11:00:31 %S A384179 1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,2,1,2,1,2,1,1,1,2,1,1,4,2,1,2,1,3,1,1, %T A384179 1,2,1,1,1,2,1,2,1,2,4,1,1,3,1,2,1,2,1,4,1,2,1,1,1,2,1,1,4,4,1,2,1,2, %U A384179 1,2,1,3,1,1,4,2,1,2,1,3,4,1,1,2,1,1,1 %N A384179 Number of ways to choose strict integer partitions of each conjugate prime index of n. %C A384179 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A384179 The prime indices of 180 are {1,1,2,2,3}, conjugate {5,3,1}, and we have choices: %e A384179 {{5},{3},{1}} %e A384179 {{5},{2,1},{1}} %e A384179 {{4,1},{3},{1}} %e A384179 {{4,1},{2,1},{1}} %e A384179 {{3,2},{3},{1}} %e A384179 {{3,2},{2,1},{1}} %e A384179 so a(180) = 6. %t A384179 fop[y_]:=Join@@@Tuples[strptns/@y]; %t A384179 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A384179 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A384179 Table[Length[fop[conj[prix[n]]]],{n,100}] %Y A384179 Positions of 1 are A037143, complement A033942. %Y A384179 For multiplicities instead of indices we have A050361. %Y A384179 Adding up over all integer partitions gives A270995, disjoint A279790, strict A279375. %Y A384179 The conjugate version is A357982, disjoint A383706. %Y A384179 The disjoint case is A384005. %Y A384179 A000041 counts integer partitions, strict A000009. %Y A384179 A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605. %Y A384179 A055396 gives least prime index, greatest A061395. %Y A384179 A056239 adds up prime indices, row sums of A112798. %Y A384179 A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432. %Y A384179 A351293 counts non Look-and-Say or non section-sum partitions, ranks A351295 or A381433. %Y A384179 Cf. A122111, A130091, A179009, A382913, A383707, A383710, A384010, A384011. %K A384179 nonn %O A384179 1,8 %A A384179 _Gus Wiseman_, May 23 2025