cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384179 Number of ways to choose strict integer partitions of each conjugate prime index of n.

This page as a plain text file.
%I A384179 #5 May 24 2025 11:00:31
%S A384179 1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,2,1,2,1,2,1,1,1,2,1,1,4,2,1,2,1,3,1,1,
%T A384179 1,2,1,1,1,2,1,2,1,2,4,1,1,3,1,2,1,2,1,4,1,2,1,1,1,2,1,1,4,4,1,2,1,2,
%U A384179 1,2,1,3,1,1,4,2,1,2,1,3,4,1,1,2,1,1,1
%N A384179 Number of ways to choose strict integer partitions of each conjugate prime index of n.
%C A384179 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A384179 The prime indices of 180 are {1,1,2,2,3}, conjugate {5,3,1}, and we have choices:
%e A384179   {{5},{3},{1}}
%e A384179   {{5},{2,1},{1}}
%e A384179   {{4,1},{3},{1}}
%e A384179   {{4,1},{2,1},{1}}
%e A384179   {{3,2},{3},{1}}
%e A384179   {{3,2},{2,1},{1}}
%e A384179 so a(180) = 6.
%t A384179 fop[y_]:=Join@@@Tuples[strptns/@y];
%t A384179 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
%t A384179 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A384179 Table[Length[fop[conj[prix[n]]]],{n,100}]
%Y A384179 Positions of 1 are A037143, complement A033942.
%Y A384179 For multiplicities instead of indices we have A050361.
%Y A384179 Adding up over all integer partitions gives A270995, disjoint A279790, strict A279375.
%Y A384179 The conjugate version is A357982, disjoint A383706.
%Y A384179 The disjoint case is A384005.
%Y A384179 A000041 counts integer partitions, strict A000009.
%Y A384179 A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
%Y A384179 A055396 gives least prime index, greatest A061395.
%Y A384179 A056239 adds up prime indices, row sums of A112798.
%Y A384179 A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
%Y A384179 A351293 counts non Look-and-Say or non section-sum partitions, ranks A351295 or A381433.
%Y A384179 Cf. A122111, A130091, A179009, A382913, A383707, A383710, A384010, A384011.
%K A384179 nonn
%O A384179 1,8
%A A384179 _Gus Wiseman_, May 23 2025