cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A384207 a(n) = [x^(3*n)] Product_{k=0..n} 1/(1 - k*x)^3.

Original entry on oeis.org

1, 10, 6562, 21157758, 192817813260, 3803916720008250, 138757892706447212551, 8432782489668636227456524, 792912489591430219972681508172, 109146372957847294924041235504625400, 21071987342698034891951000233099719150440, 5513873439400596105839885628799257242723984298
Offset: 0

Views

Author

Vaclav Kotesovec, May 22 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-k*x)^3, {k, 0, n}], {x, 0, 3*n}], {n, 0, 15}]
    Table[Sum[StirlingS2[i+n, n] * StirlingS2[j+n, n] * StirlingS2[4*n-i-j, n], {i, 0, 3*n}, {j, 0, 3*n-i}], {n, 0, 15}]

Formula

a(n) = Sum_{i=0..3*n, j=0..3*n-i} Stirling2(i+n, n) * Stirling2(j+n, n) * Stirling2(4*n-i-j, n).
a(n) ~ 2^(6*n + 1/2) * n^(3*n - 1/2) / (sqrt(3*Pi*(1-w)) * w^(3*n+1) * exp(3*n) * (2-w)^(3*n)), where w = -LambertW(-2*exp(-2)) = -A226775 = 0.406375739959959907676958124124839758210...

A384205 a(n) = [x^(2*n)] Product_{k=0..n} 1/(1 - k*x)^2.

Original entry on oeis.org

1, 3, 201, 40792, 16904053, 11861321255, 12632193171300, 19003969060842360, 38387884967440214085, 100260769162534336491025, 328834941448280603509191681, 1323249839691864496146379353852, 6410573322270839015074278503521740, 36805304509116365389123823470306765972
Offset: 0

Views

Author

Vaclav Kotesovec, May 22 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-k*x)^2, {k, 0, n}], {x, 0, 2*n}], {n, 0, 15}]
    Table[Sum[StirlingS2[i+n, n] * StirlingS2[3*n-i, n], {i, 0, 2*n}], {n, 0, 15}]

Formula

a(n) = Sum_{k=0..2*n} Stirling2(n+k, n) * Stirling2(3*n-k, n).
a(n) ~ 2^(4*n - 1/2) * n^(2*n - 1/2) / (sqrt(Pi*(1-w)) * exp(2*n) * (2-w)^(2*n) * w^(2*n + 1/2)), where w = -LambertW(-2*exp(-2)) = -A226775 = 0.4063757399599599...
Showing 1-2 of 2 results.