A384222 Irregular triangle read by rows: T(n,k) is the length of the k-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.
1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 6, 1, 1, 2, 2, 1, 2, 1, 5, 1, 1, 6, 1, 1, 6, 1, 1, 1, 1, 2, 2, 1, 1, 8, 1, 1, 1, 2, 2, 1, 1, 1, 1, 6, 1, 1, 8, 1, 1, 6, 1, 1, 1, 1, 2, 2, 1, 2, 1, 9, 1, 1, 2, 2, 1, 1, 1, 1, 8, 1, 1, 8, 1, 1, 3, 3, 1, 4, 1, 2, 2, 1, 1, 10, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 3, 3, 1, 1, 8
Offset: 1
Examples
---------------------------------------------------------------- | n | Row n of | List of divisors of n | Number of | | | the triangle | [with sublists in brackets] | sublists | ---------------------------------------------------------------- | 1 | 1; | [1]; | 1 | | 2 | 2; | [1, 2]; | 1 | | 3 | 1, 1; | [1], [3]; | 2 | | 4 | 3; | [1, 2, 4]; | 1 | | 5 | 1, 1; | [1], [5]; | 2 | | 6 | 4; | [1, 2, 3, 6]; | 1 | | 7 | 1, 1; | [1], [7]; | 2 | | 8 | 4; | [1, 2, 4, 8]; | 1 | | 9 | 1, 1, 1; | [1], [3], [9]; | 3 | | 10 | 2, 2; | [1, 2], [5, 10]; | 2 | | 11 | 1, 1; | [1], [11]; | 2 | | 12 | 6; | [1, 2, 3, 4, 6, 12]; | 1 | | 13 | 1, 1; | [1], [13]; | 2 | | 14 | 2, 2; | [1, 2], [7, 14]; | 2 | | 15 | 1, 2, 1; | [1], [3, 5], [15]; | 3 | | 16 | 5; | [1, 2, 4, 8, 16]; | 1 | | 17 | 1, 1; | [1], [17]; | 2 | | 18 | 6; | [1, 2, 3, 6, 9, 18]; | 1 | | 19 | 1, 1; | [1], [19]; | 2 | | 20 | 6; | [1, 2, 4, 5, 10, 20]; | 1 | | 21 | 1, 1, 1, 1; | [1], [3], [7], [21]; | 4 | | 22 | 2, 2; | [1, 2], [11, 22]; | 2 | | 23 | 1, 1; | [1], [23]; | 2 | | 24 | 8; | [1, 2, 3, 4, 6, 8, 12, 24]; | 1 | ... ... For n = 14 the list of divisors of 14 is [1, 2, 7, 14]. There are two sublists of divisors of 14 whose terms increase by a factor of at most 2, they are [1, 2] and [7, 14]. Each sublist has two terms, so the row 14 is [2, 2]. For n = 15 the list of divisors of 15 is [1, 3, 5, 15]. There are three sublists of divisors of 15 whose terms increase by a factor of at most 2, they are [1], [3, 5], [15]. The number of terms in the sublists are [1, 2, 1] respectively, so the row 15 is [1, 2, 1]. 78 is the first practical number A005153 not in A174973. For n = 78 the list of divisors of 78 is [1, 2, 3, 6, 13, 26, 39, 78]. There are two sublists of divisors of 78 whose terms increase by a factor of at most 2, they are [1, 2, 3, 6] and [13, 26, 39, 78]. The number of terms in the sublists are [4, 4] respectively, so the row 78 is [4, 4]. From _Omar E. Pol_, Jul 23 2025: (Start) A visualization with symmetries of the list of divisors of the first 24 positive integers and the sublists of divisors is as shown below: --------------------------------------------------------------------------------- | n | List of divisors of n | Number of | | | [with sublists of divisors in brackets] | sublists | --------------------------------------------------------------------------------- | 1 | [1] | 1 | | 2 | [1 2] | 1 | | 3 | [1] [3] | 2 | | 4 | [1 2 4] | 1 | | 5 | [1] [5] | 2 | | 6 | [1 2 3 6] | 1 | | 7 | [1] [7] | 2 | | 8 | [1 2 4 8] | 1 | | 9 | [1] [3] [9] | 3 | | 10 | [1 2] [5 10] | 2 | | 11 | [1] [11] | 2 | | 12 | [1 2 3 4 6 12] | 1 | | 13 | [1] [13] | 2 | | 14 | [1 2] [7 14] | 2 | | 15 | [1] [3 5] [15] | 3 | | 16 | [1 2 4 8 16] | 1 | | 17 | [1] [17] | 2 | | 18 | [1 2 3 6 9 18] | 1 | | 19 | [1] [19] | 2 | | 20 | [1 2 4 5 10 20] | 1 | | 21 | [1] [3] [7] [21] | 4 | | 22 | [1 2] [11 22] | 2 | | 23 | [1] [23] | 2 | | 24 | [1 2 3 4 6 8 12 24] | 1 | ... A similar structure show the positive integers in the square array A385000. (End)
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10607 (rows 1..3500 of triangle, flattened).
Crossrefs
Programs
-
Mathematica
A384222row[n_] := Map[Length, Split[Divisors[n], #2/# <= 2 &]]; Array[A384222row, 50] (* Paolo Xausa, Jul 08 2025 *)
Comments