cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384225 Irregular triangle read by rows: T(n,k) is the number of odd divisors in the k-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.

This page as a plain text file.
%I A384225 #32 Aug 22 2025 00:15:09
%S A384225 1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,3,1,1,2,1,
%T A384225 1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,2,1,1,4,1,1,1,1,1,1,1,1,1,1,2,1,3,
%U A384225 1,1,1,1,1,1,1,1,2,1,1,4,1,1,1,1,1,4,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4
%N A384225 Irregular triangle read by rows: T(n,k) is the number of odd divisors in the k-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.
%C A384225 T(n,k) is the number of odd numbers in the k-th sublist of divisors of n whose terms increase by a factor of at most 2,
%C A384225 In a sublist of divisors of n the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of n.
%C A384225 At least for the first 1000 rows the row lengths give A237271.
%C A384225 Observation: at least the first 33 rows (or first 62 terms) coincide with A280940.
%H A384225 Paolo Xausa, <a href="/A384225/b384225.txt">Table of n, a(n) for n = 1..10607</a> (rows 1..3500 of triangle, flattened).
%e A384225   ------------------------------------------------------------------
%e A384225   |  n | Row n of       |  List of divisors of n       | Number of |
%e A384225   |    | the triangle   |  [with sublists in brackets] | sublists  |
%e A384225   ------------------------------------------------------------------
%e A384225   |  1 |   1;           |  [1];                        |     1     |
%e A384225   |  2 |   1;           |  [1, 2];                     |     1     |
%e A384225   |  3 |   1, 1;        |  [1], [3];                   |     2     |
%e A384225   |  4 |   1;           |  [1, 2, 4];                  |     1     |
%e A384225   |  5 |   1, 1;        |  [1], [5];                   |     2     |
%e A384225   |  6 |   2;           |  [1, 2, 3, 6];               |     1     |
%e A384225   |  7 |   1, 1;        |  [1], [7];                   |     2     |
%e A384225   |  8 |   1;           |  [1, 2, 4, 8];               |     1     |
%e A384225   |  9 |   1, 1, 1;     |  [1], [3], [9];              |     3     |
%e A384225   | 10 |   1, 1;        |  [1, 2], [5, 10];            |     2     |
%e A384225   | 11 |   1, 1;        |  [1], [11];                  |     2     |
%e A384225   | 12 |   2;           |  [1, 2, 3, 4, 6, 12];        |     1     |
%e A384225   | 13 |   1, 1;        |  [1], [13];                  |     2     |
%e A384225   | 14 |   1, 1;        |  [1, 2], [7, 14];            |     2     |
%e A384225   | 15 |   1, 2, 1;     |  [1], [3, 5], [15];          |     3     |
%e A384225   | 16 |   1;           |  [1, 2, 4, 8, 16];           |     1     |
%e A384225   | 17 |   1, 1;        |  [1], [17];                  |     2     |
%e A384225   | 18 |   3;           |  [1, 2, 3, 6, 9, 18];        |     1     |
%e A384225   | 19 |   1, 1;        |  [1], [19];                  |     2     |
%e A384225   | 20 |   2;           |  [1, 2, 4, 5, 10, 20];       |     1     |
%e A384225   | 21 |   1, 1, 1, 1;  |  [1], [3], [7], [21];        |     4     |
%e A384225    ...
%e A384225 For n = 14 the list of divisors of 14 is [1, 2, 7, 14]. There are two sublists of divisors of 14 whose terms increase by a factor of at most 2, they are [1, 2] and [7, 14]. Each sublist has only one odd number, so the row 14 is [1, 1].
%e A384225 For n = 15 the list of divisors of 15 is [1, 3, 5, 15]. There are three sublists of divisors of 15 whose terms increase by a factor of at most 2, they are [1], [3, 5], [15]. The number of odd numbers in the sublists are [1, 2, 1] respectively, so the row 15 is [1, 2, 1].
%e A384225 For n = 16 the list of divisors of 16 is [1, 2, 4, 8, 16]. There is only one sublist of divisors of 16 whose terms increase by a factor of at most 2, that is the same as the list of divisors of 16, which has five terms and only one odd number, so the row 16 is [1].
%t A384225 A384225row[n_] := Map[Count[#, _?OddQ] &, Split[Divisors[n], #2/# <= 2 &]];
%t A384225 Array[A384225row, 50] (* _Paolo Xausa_, Jul 08 2025 *)
%Y A384225 Row sums give A001227.
%Y A384225 Cf. A000203, A027750, A174973 (2-dense numbers), A280940, A237271, A379288, A384149, A384222, A384226, A384928, A384930, A384931, A385000, A386984, A386989, A387030.
%K A384225 nonn,tabf,changed
%O A384225 1,8
%A A384225 _Omar E. Pol_, Jun 16 2025