This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384233 #17 May 29 2025 00:12:45 %S A384233 1,2,3,4,5,6,8,7,10,20,16,9,12,28,42,32,11,14,30,60,84,64,13,15,40,66, %T A384233 132,156,128,17,18,44,78,168,204,312,256,19,21,52,88,198,228,408,684, %U A384233 512,23,22,56,102,210,264,456,696,1020,1024,25,24,68,104,220,276,468,744,1140,1380 %N A384233 Square array read by upward antidiagonals: T(n,k) is the n-th number whose largest odd noncomposite divisor is its k-th divisor, n >= 1, k >= 1. %C A384233 This is a permutation of the positive integers. %H A384233 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>. %F A384233 Conjecture: T(n,2) = A061345(n). %e A384233 The corner 15 X 15 of the square array is as follows: %e A384233 1, 3, 6, 20, 42, 84, 156, 312, 684, 1020, 1380, 1860, 3480, 3720, 4920, ... %e A384233 2, 5, 10, 28, 60, 132, 204, 408, 696, 1140, 1740, 2220, 3660, 4440, 5160, ... %e A384233 4, 7, 12, 30, 66, 168, 228, 456, 744, 1332, 2040, 2460, 4020, 5580, 5640, ... %e A384233 8, 9, 14, 40, 78, 198, 264, 468, 780, 1368, 2088, 2580, 4140, 6960, 6360, ... %e A384233 16, 11, 15, 44, 88, 210, 276, 510, 816, 1392, 2232, 2664, 4260, 7224, 6660, ... %e A384233 32, 13, 18, 52, 102, 220, 330, 552, 828, 1476, 2280, 2760, 4380, 7632, 7080, ... %e A384233 64, 17, 21, 56, 104, 234, 342, 570, 888, 1488, 2436, 2820, 4740, 7896, 7380, ... %e A384233 128, 19, 22, 68, 110, 252, 348, 612, 912, 1548, 2544, 2952, 4872, 8280, 7440, ... %e A384233 256, 23, 24, 70, 114, 260, 372, 624, 930, 1560, 2604, 3096, 4980, 8496, 7740, ... %e A384233 512, 25, 26, 76, 120, 272, 390, 660, 936, 1656, 2736, 3180, 5208, 8784, 8880, ... %e A384233 1024, 27, 33, 80, 126, 304, 396, 690, 984, 1692, 2790, 3384, 5220, 8904, 9912, ... %e A384233 2048, 29, 34, 90, 130, 306, 414, 792, 1032, 1710, 2832, 3420, 5256, 9030, 10248, ... %e A384233 4096, 31, 35, 92, 136, 336, 420, 870, 1044, 1776, 2928, 3540, 5328, 9324, 10440, ... %e A384233 8192, 37, 36, 99, 138, 340, 440, 920, 1104, 1908, 3060, 3612, 5340, 9648, 10512, ... %e A384233 16384, 41, 38, 100, 140, 368, 444, 966, 1110, 1932, 3108, 3816, 5520, 9660, 10836, ... %e A384233 ... %e A384233 The divisors of 42 are [1, 2, 3, 6, 7, 14, 21, 42] and the largest odd noncomposite divisor is 7 and 7 is its 5th divisor, so T(1,5) = 42 because 42 the smallest number having that property. %t A384233 f[n_] := FirstPosition[Divisors[n], FactorInteger[n/2^IntegerExponent[n, 2]][[-1, 1]]][[1]]; seq[m_] := Module[{t = Table[0, {m}, {m}], v = Table[0, {m}], c = 0, k = 1, i, j}, While[c < m*(m + 1)/2, i = f[k]; If[i <= m, j = v[[i]] + 1; If[j <= m - i + 1, t[[i]][[j]] = k; v[[i]]++; c++]]; k++]; Table[t[[j]][[i - j + 1]], {i, 1, m}, {j, 1, i}] // Flatten]; seq[11] (* _Amiram Eldar_, May 23 2025 *) %Y A384233 Companion of A383961. %Y A384233 Row 1 gives A384232. %Y A384233 Column 1 gives A000079. %Y A384233 Cf. A006005, A027750, A061345, A065091, A087134. %K A384233 nonn,tabl %O A384233 1,2 %A A384233 _Omar E. Pol_, May 22 2025