This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384235 #17 Jun 03 2025 02:28:06 %S A384235 2,35,357,11131719,3571113,5711131719,463467479487491499503, %T A384235 811821823827829839853857,103910491051106110631069108710911093, %U A384235 1291129713011303130713191321132713611367,19011907191319311933194919511973197919871993,109091093710939109491095710973109791098710993110031102711047 %N A384235 a(n) is the least number that is the concatenation of n consecutive primes, in increasing order, and is the product of n primes, counted with multiplicity. %e A384235 a(4) = 11131719 is the concatenation of four consecutive primes 11, 13, 17, 19, and 11131719 = 3 * 17 * 167 * 1307 is the product of four primes. %p A384235 lcat:= proc(L) local r,i; %p A384235 r:= L[1]; %p A384235 for i from 2 to nops(L) do %p A384235 r:= r * 10^(1+ilog10(L[i]))+L[i] %p A384235 od; %p A384235 r %p A384235 end proc: %p A384235 f:= proc(n) local i,j,x; %p A384235 for i from 1 do %p A384235 x:= lcat([seq(ithprime(j),j=i..i+n-1)]); %p A384235 if numtheory:-bigomega(x) = n then return x fi %p A384235 od; %p A384235 end proc: %p A384235 map(f, [$1..13]); %t A384235 a[n_]:=Module[{i=1},While[PrimeOmega[m={};Do[m=Join[m,IntegerDigits[Prime[j]]],{j,i,i+n-1}];ln=FromDigits[m]]!=n,i++];ln];Array[a,11] (* _James C. McMahon_, Jun 02 2025 *) %Y A384235 Cf. A383114. %K A384235 nonn,base %O A384235 1,1 %A A384235 _Robert Israel_, May 23 2025