A384244 Triangle in which the n-th row gives the numbers k from 1 to n such that the greatest common unitary divisor of k and n is 1.
1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 3, 4, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 5, 7, 8, 9, 10, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 3, 4, 5, 8, 9, 11, 12, 13, 1, 2, 4, 7, 8, 9, 11, 13, 14
Offset: 1
Examples
Triangle begins: 1 1 1, 2 1, 2, 3 1, 2, 3, 4 1, 4, 5 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6, 7 1, 2, 3, 4, 5, 6, 7, 8 1, 3, 4, 7, 8, 9
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10349 (first 160 rows flattened)
- László Tóth, On the Bi-Unitary Analogues of Euler's Arithmetical Function and the Gcd-Sum Function, Journal of Integer Sequences, Vol. 12 (2009), Article 09.5.2.
Crossrefs
Programs
-
Mathematica
udiv[n_] := Select[Divisors[n], CoprimeQ[#, n/#] &]; ugcd[n_, m_] := Max[Intersection[udiv[n], udiv[m]]]; row[n_] := Select[Range[n], ugcd[n, #] == 1 &]; Array[row, 15] // Flatten
-
PARI
udiv(n) = select(x -> gcd(x, n/x) == 1, divisors(n)); ugcd(n, m) = vecmax(setintersect(udiv(n), udiv(m))); row(n) = select(x -> ugcd(n, x) == 1, vector(n, i, i));