cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384277 Decimal expansion of the smallest zero of the Laguerre polynomial of degree 3.

This page as a plain text file.
%I A384277 #16 Jun 27 2025 01:02:12
%S A384277 4,1,5,7,7,4,5,5,6,7,8,3,4,7,9,0,8,3,3,1,1,5,3,3,8,7,3,1,2,8,2,7,4,4,
%T A384277 7,3,5,4,6,6,1,7,4,1,2,6,9,3,1,1,8,4,6,5,0,9,3,9,6,5,9,5,4,3,2,2,3,2,
%U A384277 5,0,1,9,9,3,6,9,1,3,3,1,4,9,5,7,1,9,6
%N A384277 Decimal expansion of the smallest zero of the Laguerre polynomial of degree 3.
%H A384277 Paolo Xausa, <a href="/A384277/b384277.txt">Table of n, a(n) for n = 0..10000</a>
%H A384277 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Table 25.9, n = 3.
%H A384277 A.H.M. Smeets, <a href="/A384277/a384277.txt">Abscissas and weight factors for Laguerre integration for some larger degrees</a>.
%H A384277 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LaguerrePolynomial.html">Laguerre Polynomial</a>.
%H A384277 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Laguerre-GaussQuadrature.html">Laguerre-Gauss Quadrature</a>.
%H A384277 <a href="/index/Al#algebraic_03">Index entries for algebraic numbers, degree 3</a>.
%F A384277 Smallest root of x^3 - 9 x^2 + 18 x - 6 = 0.
%e A384277 0.41577455678347908331153387312827447354661741269311...
%t A384277 First[RealDigits[Root[LaguerreL[3, #] &, 1], 10, 100]] (* _Paolo Xausa_, Jun 05 2025 *)
%Y A384277 There are k positive real zeros of the Laguerre polynomial of degree k:
%Y A384277    k | zeros                                    | corresponding weights for Laguerre-Gauss quadrature
%Y A384277   ---+------------------------------------------+-----------------------------------------------------
%Y A384277    2 | A101465, 1+A014176                       | A201488, A100954-3
%Y A384277    3 | this sequence, A384278, A384279          | A384463, A384464, A384465
%Y A384277    4 | A384280, A384281, A384586, A384587       | A384466, A384467, A384588, A384589
%K A384277 nonn,cons
%O A384277 0,1
%A A384277 _A.H.M. Smeets_, May 24 2025