cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384294 The number of Hamiltonian cycles in the concentric ring graph of order n.

This page as a plain text file.
%I A384294 #24 May 27 2025 01:14:13
%S A384294 6,12,30,34,56,108,150,244,418,642,1040,1712,2726,4412,7174,11554,
%T A384294 18696,30292,48950,79204,128202,207362,335520,542936,878406,1421292,
%U A384294 2299758,3720994,6020696,9741756,15762390,25504084,41266546,66770562,108037040,174807680,282844646,457652252,740496982,1198149154,1938646056
%N A384294 The number of Hamiltonian cycles in the concentric ring graph of order n.
%C A384294 The concentric ring graph of order n is a cubic graph with 4n vertices and 6n edges. If we name the vertices a_j,b_j,c_j,d_j for 0<=j<n, the edges are a_j--a_j', a_j--b_j, b_j--c_j, c_j--b_j', c_j--d_j, and d_j--d_j', where j'=(j+1)mod n.
%C A384294 When n=5 it is isomorphic to the graph of the dodecahedron, which Hamilton used when he first considered "Hamiltonian cycles".
%D A384294 Donald E. Knuth, Prefascicle 8a of The Art of Computer Programming (planned to become part of Volume 4C).
%H A384294 Don Knuth, <a href="/A384294/b384294.txt">Table of n, a(n) for n = 3..100</a>
%H A384294 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,2,-2,-2,-1,1,1).
%F A384294 a(n) = 2*Lucas(n) - 2 + 2*n*[Mod(n,3)==2], where [ ] denotes the Iverson bracket.
%F A384294 G.f.: -2*x^3*(3+3*x+6*x^2-10*x^3-10*x^4-3*x^5+4*x^6+4*x^7) / ( (x^2+x-1)*(x-1)^2*(1+x+x^2)^2 ). - _R. J. Mathar_, May 26 2025
%e A384294 The a[3]=6 cycles when n=3 are:
%e A384294   a0--a1--a2--b2--c1--b1--c0--d0--d1--d2--c2--b0--a0,
%e A384294   a0--a1--a2--b2--c2--d2--d0--d1--c1--b1--c0--b0--a0,
%e A384294   a0--a1--b1--c0--b0--c2--d2--d0--d1--c1--b2--a2--a0,
%e A384294   a0--a1--b1--c1--d1--d2--d0--c0--b0--c2--b2--a2--a0,
%e A384294   a0--b0--c0--d0--d1--d2--c2--b2--c1--b1--a1--a2--a0,
%e A384294   a0--b0--c2--b2--c1--d1--d2--d0--c0--b1--a1--a2--a0.
%t A384294 a[n_]:=2LucasL[n]-2+If[Mod[n, 3]==2, 2n, 0]; Array[a,41,3]
%Y A384294 Cf. A000032 (Lucas numbers).
%K A384294 nonn,easy
%O A384294 3,1
%A A384294 _Don Knuth_, May 24 2025