A384080 a(n) = neg(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (F(0), F(1), ..., F(n-1)), where F = A000045 (Fibonacci numbers), and neg(M(n)) is the negative part of the determinant of M(n); see A380661.
0, -1, 0, -25, -295, -43264, -5469632, -3628008315, -3569061677472, -13761972434293885, -98350155131379362607, -2395228216526569309464064, -121960521137098218596500559704, -19460957348767631231695727354978359, -6994735829985160817748505807288716492800
Offset: 1
Keywords
Examples
The rows of M(4) are (0,1,1,2), (2,0,1,1), (1,2,0,1), (1,1,2,0); determinant(M(4)) = -16; permanent(M(4)) = 34, so neg(M(4)) = (-16 - 34)/2 = -25 and pos(M(4)) = (-16 + 34)/2 = 9.
Programs
-
Mathematica
z = 14; v[n_] := Table[Fibonacci[k], {k, 0, n - 1}]; u[n_] := Table[RotateRight[#, k - 1], {k, 1, Length[#]}] &[v[n]] p = Table[Permanent[u[n]], {n, 1, z}] (* A384079 *) d = Table[Simplify[Det[u[n]]], {n, 1, z}] (* A123744, with alternating signs *) neg = (d - p)/2 (* A384080 *) pos = (d + p)/2 (* A384313 *)