This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384317 #6 May 28 2025 09:17:21 %S A384317 0,0,0,1,1,1,4,4,5,5,12,12,16,19,22,35,38,48,58,68,79,110,121,149,175, %T A384317 207,242,281,352,397,473 %N A384317 Number of integer partitions of n with more than one possible way to choose disjoint strict partitions of each part. %C A384317 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %F A384317 a(n) = A383708(n) - A179009(n). %e A384317 There are two possibilities for (4,3), namely ((4),(3)) and ((4),(2,1)), so (4,3) is counted under a(7). %e A384317 The a(3) = 1 through a(11) = 12 partitions: %e A384317 (3) (4) (5) (6) (7) (8) (9) (10) (11) %e A384317 (3,3) (4,3) (4,4) (5,4) (5,5) (6,5) %e A384317 (4,2) (5,2) (5,3) (6,3) (6,4) (7,4) %e A384317 (5,1) (6,1) (6,2) (7,2) (7,3) (8,3) %e A384317 (7,1) (8,1) (8,2) (9,2) %e A384317 (9,1) (10,1) %e A384317 (4,3,3) (5,3,3) %e A384317 (4,4,2) (5,4,2) %e A384317 (5,3,2) (5,5,1) %e A384317 (5,4,1) (6,3,2) %e A384317 (6,3,1) (7,3,1) %e A384317 (7,2,1) (8,2,1) %t A384317 pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&]; %t A384317 Table[Length[Select[IntegerPartitions[n],Length[pof[#]]>1&]],{n,0,30}] %Y A384317 The case of a unique choice is A179009, ranks A383707. %Y A384317 The case of at least one choice is A383708, ranks A382913. %Y A384317 The case of no choices is A383710, ranks A382912. %Y A384317 The strict case is A384318, ranks A384322. %Y A384317 These partitions are ranked by A384321, positions of terms > 1 in A383706. %Y A384317 The case of a unique proper choice is A384323, ranks A384347, strict A384319. %Y A384317 A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432. %Y A384317 A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433. %Y A384317 A357982 counts choices of strict partitions of prime indices, non-strict A299200. %Y A384317 Cf. A098859, A381454, A382525, A383533, A383711, A384320. %K A384317 nonn,more %O A384317 0,7 %A A384317 _Gus Wiseman_, May 28 2025