cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384320 Heinz numbers of integer partitions whose distinct parts are maximally refined.

This page as a plain text file.
%I A384320 #16 Jun 10 2025 16:26:02
%S A384320 1,2,3,4,6,8,9,10,12,14,15,16,18,20,24,27,28,30,32,36,40,42,45,48,50,
%T A384320 54,56,60,64,66,70,72,75,78,80,81,84,90,96,98,100,105,108,110,112,120,
%U A384320 126,128,132,135,140,144,150,156,160,162,168,180,182,192,196
%N A384320 Heinz numbers of integer partitions whose distinct parts are maximally refined.
%C A384320 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%C A384320 Given a partition, the following are equivalent:
%C A384320 1) The distinct parts are maximally refined.
%C A384320 2) Every strict partition of a part contains a part. In other words, if y is the set of parts and z is any strict partition of any element of y, then z must contain at least one element from y.
%C A384320 3) No part is a sum of distinct non-parts.
%e A384320 The terms together with their prime indices begin:
%e A384320     1: {}
%e A384320     2: {1}
%e A384320     3: {2}
%e A384320     4: {1,1}
%e A384320     6: {1,2}
%e A384320     8: {1,1,1}
%e A384320     9: {2,2}
%e A384320    10: {1,3}
%e A384320    12: {1,1,2}
%e A384320    14: {1,4}
%e A384320    15: {2,3}
%e A384320    16: {1,1,1,1}
%e A384320    18: {1,2,2}
%e A384320    20: {1,1,3}
%e A384320    24: {1,1,1,2}
%e A384320    27: {2,2,2}
%e A384320    28: {1,1,4}
%e A384320    30: {1,2,3}
%e A384320    32: {1,1,1,1,1}
%t A384320 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A384320 nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
%t A384320 Select[Range[20],With[{y=Union[prix[#]]},UnsameQ@@y&&Intersection[y,Total/@nonsets[y]]=={}]&]
%Y A384320 The squarefree case is A383707, counted by A179009.
%Y A384320 The complement appears to be A384321, strict case A384322, counted by A384318.
%Y A384320 Partitions of this type are counted by A384392.
%Y A384320 A048767 is the Look-and-Say transform, fixed points A048768.
%Y A384320 A055396 gives least prime index, greatest A061395.
%Y A384320 A056239 adds up prime indices, row sums of A112798.
%Y A384320 Cf. A383706, A357982 (non-disjoint), A299200 (non-strict).
%Y A384320 Cf. A130091, A279375, A279790, A317142, A326080, A351294, A351295, A381454, A382525, A384390.
%K A384320 nonn
%O A384320 1,2
%A A384320 _Gus Wiseman_, Jun 01 2025