This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384320 #16 Jun 10 2025 16:26:02 %S A384320 1,2,3,4,6,8,9,10,12,14,15,16,18,20,24,27,28,30,32,36,40,42,45,48,50, %T A384320 54,56,60,64,66,70,72,75,78,80,81,84,90,96,98,100,105,108,110,112,120, %U A384320 126,128,132,135,140,144,150,156,160,162,168,180,182,192,196 %N A384320 Heinz numbers of integer partitions whose distinct parts are maximally refined. %C A384320 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A384320 Given a partition, the following are equivalent: %C A384320 1) The distinct parts are maximally refined. %C A384320 2) Every strict partition of a part contains a part. In other words, if y is the set of parts and z is any strict partition of any element of y, then z must contain at least one element from y. %C A384320 3) No part is a sum of distinct non-parts. %e A384320 The terms together with their prime indices begin: %e A384320 1: {} %e A384320 2: {1} %e A384320 3: {2} %e A384320 4: {1,1} %e A384320 6: {1,2} %e A384320 8: {1,1,1} %e A384320 9: {2,2} %e A384320 10: {1,3} %e A384320 12: {1,1,2} %e A384320 14: {1,4} %e A384320 15: {2,3} %e A384320 16: {1,1,1,1} %e A384320 18: {1,2,2} %e A384320 20: {1,1,3} %e A384320 24: {1,1,1,2} %e A384320 27: {2,2,2} %e A384320 28: {1,1,4} %e A384320 30: {1,2,3} %e A384320 32: {1,1,1,1,1} %t A384320 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A384320 nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]]; %t A384320 Select[Range[20],With[{y=Union[prix[#]]},UnsameQ@@y&&Intersection[y,Total/@nonsets[y]]=={}]&] %Y A384320 The squarefree case is A383707, counted by A179009. %Y A384320 The complement appears to be A384321, strict case A384322, counted by A384318. %Y A384320 Partitions of this type are counted by A384392. %Y A384320 A048767 is the Look-and-Say transform, fixed points A048768. %Y A384320 A055396 gives least prime index, greatest A061395. %Y A384320 A056239 adds up prime indices, row sums of A112798. %Y A384320 Cf. A383706, A357982 (non-disjoint), A299200 (non-strict). %Y A384320 Cf. A130091, A279375, A279790, A317142, A326080, A351294, A351295, A381454, A382525, A384390. %K A384320 nonn %O A384320 1,2 %A A384320 _Gus Wiseman_, Jun 01 2025