This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384321 #10 Jun 11 2025 23:40:56 %S A384321 5,7,11,13,17,19,21,22,23,25,26,29,31,33,34,35,37,38,39,41,43,46,47, %T A384321 49,51,53,55,57,58,59,61,62,65,67,69,71,73,74,77,79,82,83,85,86,87,89, %U A384321 91,93,94,95,97,101,102,103,106,107,109,111,113,114,115,118,119 %N A384321 Numbers whose distinct prime indices are not maximally refined. %C A384321 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A384321 Given a partition, the following are equivalent: %C A384321 1) The distinct parts are maximally refined. %C A384321 2) Every strict partition of a part contains a part. In other words, if y is the set of parts and z is any strict partition of any element of y, then z must contain at least one element from y. %C A384321 3) No part is a sum of distinct non-parts. %e A384321 The prime indices of 25 are {3,3}, which has refinements: ((3),(1,2)) and ((1,2),(3)), so 25 is in the sequence. %e A384321 The prime indices of 102 are {1,2,7}, which has refinement ((1),(2),(3,4)), so 102 is in the sequence. %e A384321 The terms together with their prime indices begin: %e A384321 5: {3} 39: {2,6} 73: {21} %e A384321 7: {4} 41: {13} 74: {1,12} %e A384321 11: {5} 43: {14} 77: {4,5} %e A384321 13: {6} 46: {1,9} 79: {22} %e A384321 17: {7} 47: {15} 82: {1,13} %e A384321 19: {8} 49: {4,4} 83: {23} %e A384321 21: {2,4} 51: {2,7} 85: {3,7} %e A384321 22: {1,5} 53: {16} 86: {1,14} %e A384321 23: {9} 55: {3,5} 87: {2,10} %e A384321 25: {3,3} 57: {2,8} 89: {24} %e A384321 26: {1,6} 58: {1,10} 91: {4,6} %e A384321 29: {10} 59: {17} 93: {2,11} %e A384321 31: {11} 61: {18} 94: {1,15} %e A384321 33: {2,5} 62: {1,11} 95: {3,8} %e A384321 34: {1,7} 65: {3,6} 97: {25} %e A384321 35: {3,4} 67: {19} 101: {26} %e A384321 37: {12} 69: {2,9} 102: {1,2,7} %e A384321 38: {1,8} 71: {20} 103: {27} %t A384321 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A384321 nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]]; %t A384321 Select[Range[30],With[{y=Union[prix[#]]},UnsameQ@@y&&Intersection[y,Total/@nonsets[y]]!={}]&] %Y A384321 These appear to be positions of terms > 1 in A383706, non-disjoint A357982, non-strict A299200. %Y A384321 The strict complement is A383707, counted by A179009. %Y A384321 Partitions of this type appear to be counted by A384317. %Y A384321 The complement is A384320. %Y A384321 The strict (squarefree) case appears to be A384322, counted by A384318. %Y A384321 A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605. %Y A384321 A055396 gives least prime index, greatest A061395. %Y A384321 A056239 adds up prime indices, row sums of A112798. %Y A384321 A239455 counts Look-and-Say partitions, ranks A351294 or A381432. %Y A384321 A279790 and A279375 count ways to choose disjoint strict partitions of prime indices. %Y A384321 A351293 counts non-Look-and-Say partitions, ranks A351295 or A381433. %Y A384321 Cf. A098859, A122111, A130091, A317142, A326080, A381454, A382525, A384005, A384323, A384390. %K A384321 nonn %O A384321 1,1 %A A384321 _Gus Wiseman_, Jun 01 2025