This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384322 #8 Jul 27 2025 18:03:11 %S A384322 5,7,11,13,17,19,21,22,23,26,29,31,33,34,35,37,38,39,41,43,46,47,51, %T A384322 53,55,57,58,59,61,62,65,67,69,71,73,74,77,79,82,83,85,86,87,89,91,93, %U A384322 94,95,97,101,102,103,106,107,109,111,113,114,115,118,119,122 %N A384322 Heinz numbers of strict integer partitions with more than one possible way to choose disjoint strict partitions of each part, i.e., strict partitions that can be properly refined. %e A384322 The strict partition (7,2,1) with Heinz number 102 can be properly refined into (4,3,2,1), so 102 is in the sequence. %e A384322 The terms together with their prime indices begin: %e A384322 5: {3} 46: {1,9} 85: {3,7} %e A384322 7: {4} 47: {15} 86: {1,14} %e A384322 11: {5} 51: {2,7} 87: {2,10} %e A384322 13: {6} 53: {16} 89: {24} %e A384322 17: {7} 55: {3,5} 91: {4,6} %e A384322 19: {8} 57: {2,8} 93: {2,11} %e A384322 21: {2,4} 58: {1,10} 94: {1,15} %e A384322 22: {1,5} 59: {17} 95: {3,8} %e A384322 23: {9} 61: {18} 97: {25} %e A384322 26: {1,6} 62: {1,11} 101: {26} %e A384322 29: {10} 65: {3,6} 102: {1,2,7} %e A384322 31: {11} 67: {19} 103: {27} %e A384322 33: {2,5} 69: {2,9} 106: {1,16} %e A384322 34: {1,7} 71: {20} 107: {28} %e A384322 35: {3,4} 73: {21} 109: {29} %e A384322 37: {12} 74: {1,12} 111: {2,12} %e A384322 38: {1,8} 77: {4,5} 113: {30} %e A384322 39: {2,6} 79: {22} 114: {1,2,8} %e A384322 41: {13} 82: {1,13} 115: {3,9} %e A384322 43: {14} 83: {23} 118: {1,17} %t A384322 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A384322 pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&]; %t A384322 Select[Range[100],UnsameQ@@prix[#]&&Length[pof[prix[#]]]>1&] %Y A384322 The non-strict version for no choices appears to be A382912, count A383710, odd A383711. %Y A384322 The non-strict version for > 0 choice appears to be A382913, count A383708, odd A383533. %Y A384322 These are the squarefree positions of terms > 1 in A383706, see A357982, A299200. %Y A384322 The case of a unique choice is A383707, counted by A179009. %Y A384322 Partitions of this type are counted by A384318. %Y A384322 This is the strict/squarefree case of A384321, counted by A384317. %Y A384322 The case of a unique proper choice is A384390, counted by A384319, non-strict A384323. %Y A384322 A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605. %Y A384322 A055396 gives least prime index, greatest A061395. %Y A384322 A056239 adds up prime indices, row sums of A112798. %Y A384322 A239455 counts Look-and-Say partitions, ranks A351294 or A381432. %Y A384322 A279790 and A279375 count ways to choose disjoint strict partitions of prime indices. %Y A384322 A351293 counts non-Look-and-Say partitions, ranks A351295 or A381433. %Y A384322 Cf. A098859, A122111, A130091, A317142, A381454, A382525, A384005, A384320, A384347. %K A384322 nonn %O A384322 1,1 %A A384322 _Gus Wiseman_, Jun 01 2025