cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384322 Heinz numbers of strict integer partitions with more than one possible way to choose disjoint strict partitions of each part, i.e., strict partitions that can be properly refined.

This page as a plain text file.
%I A384322 #8 Jul 27 2025 18:03:11
%S A384322 5,7,11,13,17,19,21,22,23,26,29,31,33,34,35,37,38,39,41,43,46,47,51,
%T A384322 53,55,57,58,59,61,62,65,67,69,71,73,74,77,79,82,83,85,86,87,89,91,93,
%U A384322 94,95,97,101,102,103,106,107,109,111,113,114,115,118,119,122
%N A384322 Heinz numbers of strict integer partitions with more than one possible way to choose disjoint strict partitions of each part, i.e., strict partitions that can be properly refined.
%e A384322 The strict partition (7,2,1) with Heinz number 102 can be properly refined into (4,3,2,1), so 102 is in the sequence.
%e A384322 The terms together with their prime indices begin:
%e A384322      5: {3}      46: {1,9}      85: {3,7}
%e A384322      7: {4}      47: {15}       86: {1,14}
%e A384322     11: {5}      51: {2,7}      87: {2,10}
%e A384322     13: {6}      53: {16}       89: {24}
%e A384322     17: {7}      55: {3,5}      91: {4,6}
%e A384322     19: {8}      57: {2,8}      93: {2,11}
%e A384322     21: {2,4}    58: {1,10}     94: {1,15}
%e A384322     22: {1,5}    59: {17}       95: {3,8}
%e A384322     23: {9}      61: {18}       97: {25}
%e A384322     26: {1,6}    62: {1,11}    101: {26}
%e A384322     29: {10}     65: {3,6}     102: {1,2,7}
%e A384322     31: {11}     67: {19}      103: {27}
%e A384322     33: {2,5}    69: {2,9}     106: {1,16}
%e A384322     34: {1,7}    71: {20}      107: {28}
%e A384322     35: {3,4}    73: {21}      109: {29}
%e A384322     37: {12}     74: {1,12}    111: {2,12}
%e A384322     38: {1,8}    77: {4,5}     113: {30}
%e A384322     39: {2,6}    79: {22}      114: {1,2,8}
%e A384322     41: {13}     82: {1,13}    115: {3,9}
%e A384322     43: {14}     83: {23}      118: {1,17}
%t A384322 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A384322 pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
%t A384322 Select[Range[100],UnsameQ@@prix[#]&&Length[pof[prix[#]]]>1&]
%Y A384322 The non-strict version for no choices appears to be A382912, count A383710, odd A383711.
%Y A384322 The non-strict version for > 0 choice appears to be A382913, count A383708, odd A383533.
%Y A384322 These are the squarefree positions of terms > 1 in A383706, see A357982, A299200.
%Y A384322 The case of a unique choice is A383707, counted by A179009.
%Y A384322 Partitions of this type are counted by A384318.
%Y A384322 This is the strict/squarefree case of A384321, counted by A384317.
%Y A384322 The case of a unique proper choice is A384390, counted by A384319, non-strict A384323.
%Y A384322 A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
%Y A384322 A055396 gives least prime index, greatest A061395.
%Y A384322 A056239 adds up prime indices, row sums of A112798.
%Y A384322 A239455 counts Look-and-Say partitions, ranks A351294 or A381432.
%Y A384322 A279790 and A279375 count ways to choose disjoint strict partitions of prime indices.
%Y A384322 A351293 counts non-Look-and-Say partitions, ranks A351295 or A381433.
%Y A384322 Cf. A098859, A122111, A130091, A317142, A381454, A382525, A384005, A384320, A384347.
%K A384322 nonn
%O A384322 1,1
%A A384322 _Gus Wiseman_, Jun 01 2025