This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384323 #8 May 30 2025 23:14:24 %S A384323 0,0,0,1,1,0,3,3,2,0,6,6,6,6,4,10,10,14,16,15,16,17,20,25,27,28,37,43, %T A384323 31,42,44 %N A384323 Number of integer partitions of n with exactly two possible ways to choose disjoint strict partitions of each part. %e A384323 For y = (4,3,3) we have two ways: ((4),(3),(2,1)) and ((4),(2,1),(3)), so y is counted under a(10). %e A384323 The a(0) = 0 through a(15) = 10 partitions: %e A384323 . . . 3 4 . 33 43 44 . 433 533 543 544 554 5433 %e A384323 42 52 62 442 542 552 553 644 5442 %e A384323 51 61 532 551 633 652 662 5532 %e A384323 541 632 732 661 833 5541 %e A384323 631 731 741 733 6432 %e A384323 721 821 831 832 6531 %e A384323 7431 %e A384323 7521 %e A384323 8421 %e A384323 9321 %t A384323 pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&]; %t A384323 Table[Length[Select[IntegerPartitions[n],Length[pof[#]]==2&]],{n,0,15}] %Y A384323 For just one choice we have A179009, ranked by A383707. %Y A384323 Twice-partitions of this type are counted by A279790. %Y A384323 For at least one choice we have A383708, odd case A383533. %Y A384323 For no choices we have A383710, odd case A383711. %Y A384323 For more than one choice we have A384317, ranked by A384321. %Y A384323 The strict version for at least one choice is A384318, ranked by A384322. %Y A384323 The strict version is A384319, ranked by A384390. %Y A384323 These partitions are ranked by A384347 = positions of 2 in A383706. %Y A384323 A000041 counts integer partitions, strict A000009. %Y A384323 A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605. %Y A384323 A239455 counts Look-and-Say partitions, ranks A351294 or A381432. %Y A384323 A351293 counts non-Look-and-Say partitions, ranks A351295 or A381433. %Y A384323 A357982 counts choices of strict partitions of each prime index. %Y A384323 Cf. A098859, A299200, A317142, A381454, A382525, A382912, A382913, A384005. %K A384323 nonn,more %O A384323 0,7 %A A384323 _Gus Wiseman_, May 30 2025