This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384330 #26 May 26 2025 18:29:21 %S A384330 1,0,1,1,1,1,3,3,8,11,30,30,57,57,159,295,427,427,1033,1033,1973,3610, %T A384330 10427,10427,20575,28731,83535,142793,273755,273755,549946,549946, %U A384330 1245416,2289562,6665252,12386159,24210731,24210731,71150197,131657471,256115337,256115337 %N A384330 Number of distinct subsets S of [n] such that for all 1 <= k <= n, there exist elements x,y in S (not necessarily distinct) such that x*y = 2k. %F A384330 a(p) = a(p-1) for odd prime p. - _Jinyuan Wang_, May 26 2025 %e A384330 a(6) = 3 because there are three sets that match the said condition: {1,2,3,4,5}, {1,2,4,5,6} and {1,2,3,4,5,6}. %o A384330 (Python) %o A384330 def a(n): %o A384330 if n == 0: return 1 %o A384330 t = set(k << 1 for k in range(1, n+1)) %o A384330 c = 0 %o A384330 for i in range(1, (1 << n)+1, 2): %o A384330 s = [j+1 for j in range(n) if (i >> j) & 1] %o A384330 if len(s) == 0 or s[0] != 1: continue %o A384330 ss = set(x * y for x in s for y in s if not (x & 1 and y & 1) ) %o A384330 if t.issubset(ss): c += 1 %o A384330 return c %o A384330 print([a(n) for n in range(0,29)]) %Y A384330 Cf. A000079, A000225, A383968. %K A384330 nonn %O A384330 0,7 %A A384330 _DarĂo Clavijo_, May 26 2025 %E A384330 More terms from _Jinyuan Wang_, May 26 2025