This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384342 #11 Jul 23 2025 16:09:06 %S A384342 1,1,1,1,1,1,1,1,1,1,1,2,1,2,2,2,2,2,2 %N A384342 Largest minimum height of the irreducible factors of a degree-n polynomial of height 1. %e A384342 For n < 12, every height 1 degree n polynomial has a height 1 irreducible factor, so a(n) = 1. %e A384342 For n = 12, x^12-x^11-x^9-x^8+x^6-x^4+x^3+x+1 = (x^6-2x^5+x^4-x^2+x-1)(x^6+x^5+x^4-x^2-2x-1) is the product of two irreducible polynomials of height 2, so a(12) >= 2; and every degree 12 height 1 polynomial has an irreducible factor of height at most 2, so a(12) = 2. %o A384342 (Python) %o A384342 from msmath.poly import polynomial as poly %o A384342 def height(p) : %o A384342 """find the height, i.e. max abs coeff, of poly p""" %o A384342 return max(map(abs, p)); %o A384342 def height1(n) : %o A384342 """generate all height 1 polys of degree n""" %o A384342 for a in range(3**n) : %o A384342 p = [1]; %o A384342 for i in range(n) : %o A384342 a, r = divmod(a, 3); %o A384342 p.append(r-1); %o A384342 yield poly(*p); %o A384342 def a(n) : %o A384342 """Return max min height of the irreducible factors of a degree n height 1 poly""" %o A384342 highest = 0; %o A384342 for p in height1(n) : %o A384342 f = p.factor(); %o A384342 h = min(map(height, f)); %o A384342 if highest < h: %o A384342 highest = h; %o A384342 return highest; %Y A384342 Cf. A363959 gives max height of max-height irreducible factor, whereas this sequence gives max height of min-height irreducible factor. %K A384342 nonn,hard,more %O A384342 1,12 %A A384342 _Mike Speciner_, May 26 2025