cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384345 Expansion of Product_{k>=1} (1 + k*x)^((1/20) * (4/5)^k).

This page as a plain text file.
%I A384345 #10 May 27 2025 10:34:36
%S A384345 1,1,-4,36,-494,9026,-205284,5581276,-176518189,6366839811,
%T A384345 -257967985400,11601382088720,-573484266103260,30909105184132900,
%U A384345 -1804012437852543160,113356419526025564808,-7629831521445348113927,547688013439312943707673,-41765446604358525581076812
%N A384345 Expansion of Product_{k>=1} (1 + k*x)^((1/20) * (4/5)^k).
%F A384345 G.f. A(x) satisfies A(x) = (1+x)^(1/5) * A(x/(1+x))^(4/5).
%F A384345 G.f.: exp(Sum_{k>=1} (-1)^(k-1) * A050353(k) * x^k/k).
%F A384345 G.f.: 1/B(-x), where B(x) is the g.f. of A090356.
%o A384345 (PARI) my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, (-1)^(k-1)*sum(j=0, k, 4^(j-1)*j!*stirling(k, j, 2))*x^k/k)))
%Y A384345 Cf. A381890, A384343, A384344.
%Y A384345 Cf. A050353, A090356.
%K A384345 sign
%O A384345 0,3
%A A384345 _Seiichi Manyama_, May 26 2025