This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384347 #7 May 28 2025 10:53:22 %S A384347 5,7,21,22,25,26,33,35,39,49,102,114,130,147,154,165,170,175,190,195, %T A384347 231,238,242,255,275,285 %N A384347 Heinz numbers of integer partitions with exactly two possible ways to choose disjoint strict partitions of each part. %C A384347 Positions of 2 in A383706. %C A384347 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A384347 The prime indices of 275 are {3,3,5}, with two ways to choose disjoint strict partitions of each part: ((3),(2,1),(5)) and ((2,1),(3),(5)). Hence 275 is in the sequence. %e A384347 The terms together with their prime indices begin: %e A384347 5: {3} %e A384347 7: {4} %e A384347 21: {2,4} %e A384347 22: {1,5} %e A384347 25: {3,3} %e A384347 26: {1,6} %e A384347 33: {2,5} %e A384347 35: {3,4} %e A384347 39: {2,6} %e A384347 49: {4,4} %e A384347 102: {1,2,7} %e A384347 114: {1,2,8} %e A384347 130: {1,3,6} %e A384347 147: {2,4,4} %e A384347 154: {1,4,5} %e A384347 165: {2,3,5} %t A384347 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A384347 pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&]; %t A384347 Select[Range[100],Length[pof[prix[#]]]==2&] %Y A384347 The case of no choices is A382912, counted by A383710, odd case A383711. %Y A384347 These are positions of 2 in A383706. %Y A384347 The case of no proper choices is A383707, counted by A179009. %Y A384347 The case of some proper choice is A384321, strict A384322, count A384317, strict A384318. %Y A384347 These partitions are counted by A384323, strict A384319. %Y A384347 A055396 gives least prime index, greatest A061395. %Y A384347 A056239 adds up prime indices, row sums of A112798. %Y A384347 A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432. %Y A384347 A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433. %Y A384347 A357982 counts strict partitions of prime indices, non-strict A299200. %Y A384347 Cf. A048767, A382525, A382771, A382857, A383533, A383708, A384320. %K A384347 nonn,more %O A384347 1,1 %A A384347 _Gus Wiseman_, May 27 2025