cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384347 Heinz numbers of integer partitions with exactly two possible ways to choose disjoint strict partitions of each part.

This page as a plain text file.
%I A384347 #7 May 28 2025 10:53:22
%S A384347 5,7,21,22,25,26,33,35,39,49,102,114,130,147,154,165,170,175,190,195,
%T A384347 231,238,242,255,275,285
%N A384347 Heinz numbers of integer partitions with exactly two possible ways to choose disjoint strict partitions of each part.
%C A384347 Positions of 2 in A383706.
%C A384347 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%e A384347 The prime indices of 275 are {3,3,5}, with two ways to choose disjoint strict partitions of each part: ((3),(2,1),(5)) and ((2,1),(3),(5)). Hence 275 is in the sequence.
%e A384347 The terms together with their prime indices begin:
%e A384347     5: {3}
%e A384347     7: {4}
%e A384347    21: {2,4}
%e A384347    22: {1,5}
%e A384347    25: {3,3}
%e A384347    26: {1,6}
%e A384347    33: {2,5}
%e A384347    35: {3,4}
%e A384347    39: {2,6}
%e A384347    49: {4,4}
%e A384347   102: {1,2,7}
%e A384347   114: {1,2,8}
%e A384347   130: {1,3,6}
%e A384347   147: {2,4,4}
%e A384347   154: {1,4,5}
%e A384347   165: {2,3,5}
%t A384347 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A384347 pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
%t A384347 Select[Range[100],Length[pof[prix[#]]]==2&]
%Y A384347 The case of no choices is A382912, counted by A383710, odd case A383711.
%Y A384347 These are positions of 2 in A383706.
%Y A384347 The case of no proper choices is A383707, counted by A179009.
%Y A384347 The case of some proper choice is A384321, strict A384322, count A384317, strict A384318.
%Y A384347 These partitions are counted by A384323, strict A384319.
%Y A384347 A055396 gives least prime index, greatest A061395.
%Y A384347 A056239 adds up prime indices, row sums of A112798.
%Y A384347 A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
%Y A384347 A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
%Y A384347 A357982 counts strict partitions of prime indices, non-strict A299200.
%Y A384347 Cf. A048767, A382525, A382771, A382857, A383533, A383708, A384320.
%K A384347 nonn,more
%O A384347 1,1
%A A384347 _Gus Wiseman_, May 27 2025