This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384348 #5 May 30 2025 23:12:25 %S A384348 1,1,2,2,4,6,7,11,17,25,30,44,61,82,113,141,193,249,327,422,548,682, %T A384348 881,1106,1400,1751 %N A384348 Number of integer partitions of n with no proper way to choose disjoint strict partitions of each part. %C A384348 By "proper" we exclude the case of all singletons, which is disjoint when n is squarefree. %e A384348 For the partition y = (5,4,2,1) we have the following proper ways to choose strict partitions of each part: %e A384348 ((5),(3,1),(2),(1)) %e A384348 ((4,1),(4,2),(1)) %e A384348 ((4,1),(3,1),(2),(1)) %e A384348 ((3,2),(4),(2),(1)) %e A384348 ((3,2),(3,1),(2),(1)) %e A384348 But none of this is disjoint, so y is counted under a(12). %e A384348 The a(1) = 1 through a(8) = 17 partitions: %e A384348 (1) (2) (21) (22) (32) (222) (322) (332) %e A384348 (11) (111) (31) (41) (321) (331) (422) %e A384348 (211) (221) (411) (421) (431) %e A384348 (1111) (311) (2211) (511) (521) %e A384348 (2111) (3111) (2221) (611) %e A384348 (11111) (21111) (3211) (2222) %e A384348 (111111) (4111) (3221) %e A384348 (22111) (3311) %e A384348 (31111) (4211) %e A384348 (211111) (5111) %e A384348 (1111111) (22211) %e A384348 (32111) %e A384348 (41111) %e A384348 (221111) %e A384348 (311111) %e A384348 (2111111) %e A384348 (11111111) %t A384348 pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&]; %t A384348 Table[Length[Select[IntegerPartitions[n],Length[pofprop[#]]==0&]],{n,0,15}] %Y A384348 The strict case is A179009, ranked by A383707. %Y A384348 This is the proper version of A383710, odd case A383711. %Y A384348 This is the proper complement of A383708, odd case A383533. %Y A384348 The complement is counted by A384317, ranks A384321. %Y A384348 The strict version for at least one proper choice is A384318, ranked by A384322. %Y A384348 For just one proper choice we have A384319, ranked by A384390. %Y A384348 For two choices we have A384323, ranks A384347 = positions of 2 in A383706. %Y A384348 These partitions are ranked by A384349. %Y A384348 For more than one proper choice we have A384395, ranked by A384393. %Y A384348 A000041 counts integer partitions, strict A000009. %Y A384348 A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605. %Y A384348 A239455 counts Look-and-Say partitions, ranks A351294 or A381432. %Y A384348 A351293 counts non-Look-and-Say partitions, ranks A351295 or A381433. %Y A384348 Cf. A098859, A279790, A299200, A317142, A357982, A381454, A382525, A382912, A382913, A384005. %K A384348 nonn %O A384348 0,3 %A A384348 _Gus Wiseman_, May 30 2025