This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384349 #7 Jun 05 2025 09:54:29 %S A384349 1,2,3,4,6,8,9,10,12,14,15,16,18,20,24,27,28,30,32,36,40,42,44,45,48, %T A384349 50,52,54,56,60,63,64,66,68,70,72,75,76,78,80,81,84,88,90,92,96,98,99, %U A384349 100,104,105,108,110,112,116,117,120,124,125,126,128,132,135 %N A384349 Heinz numbers of integer partitions with no proper way to choose disjoint strict partitions of each part. %C A384349 By "proper" we exclude the case of all singletons, which is disjoint when n is squarefree. %C A384349 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A384349 The prime indices of 102 are {1,2,7}, which has proper disjoint choice ((1),(2),(3,4)), so 102 is not in the sequence. %e A384349 The terms together with their prime indices begin: %e A384349 1: {} 27: {2,2,2} 63: {2,2,4} %e A384349 2: {1} 28: {1,1,4} 64: {1,1,1,1,1,1} %e A384349 3: {2} 30: {1,2,3} 66: {1,2,5} %e A384349 4: {1,1} 32: {1,1,1,1,1} 68: {1,1,7} %e A384349 6: {1,2} 36: {1,1,2,2} 70: {1,3,4} %e A384349 8: {1,1,1} 40: {1,1,1,3} 72: {1,1,1,2,2} %e A384349 9: {2,2} 42: {1,2,4} 75: {2,3,3} %e A384349 10: {1,3} 44: {1,1,5} 76: {1,1,8} %e A384349 12: {1,1,2} 45: {2,2,3} 78: {1,2,6} %e A384349 14: {1,4} 48: {1,1,1,1,2} 80: {1,1,1,1,3} %e A384349 15: {2,3} 50: {1,3,3} 81: {2,2,2,2} %e A384349 16: {1,1,1,1} 52: {1,1,6} 84: {1,1,2,4} %e A384349 18: {1,2,2} 54: {1,2,2,2} 88: {1,1,1,5} %e A384349 20: {1,1,3} 56: {1,1,1,4} 90: {1,2,2,3} %e A384349 24: {1,1,1,2} 60: {1,1,2,3} 92: {1,1,9} %t A384349 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A384349 pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&]; %t A384349 Select[Range[100],Length[pofprop[prix[#]]]==0&] %Y A384349 The non-proper version appears to be A382912, counted by A383710. %Y A384349 The non-proper complement appears to be A382913, counted by A383708. %Y A384349 The complement is A384321, counted by A384317. %Y A384349 These partitions are counted by A384348. %Y A384349 These are the positions of 0 in A384389. %Y A384349 The case of a unique proper choice is A384390, counted by A384319. %Y A384349 A048767 is the Look-and-Say transform, fixed points A048768. %Y A384349 A056239 adds up prime indices, row sums of A112798. %Y A384349 A179009 counts maximally refined strict partitions, ranks A383707. %Y A384349 A279790 and A279375 count ways to choose disjoint strict partitions of prime indices. %Y A384349 Cf. A122111, A130091, A317142, A326080, A351294, A357982, A381454, A382525, A383706, A384320, A384322. %K A384349 nonn %O A384349 1,2 %A A384349 _Gus Wiseman_, Jun 03 2025