cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384349 Heinz numbers of integer partitions with no proper way to choose disjoint strict partitions of each part.

This page as a plain text file.
%I A384349 #7 Jun 05 2025 09:54:29
%S A384349 1,2,3,4,6,8,9,10,12,14,15,16,18,20,24,27,28,30,32,36,40,42,44,45,48,
%T A384349 50,52,54,56,60,63,64,66,68,70,72,75,76,78,80,81,84,88,90,92,96,98,99,
%U A384349 100,104,105,108,110,112,116,117,120,124,125,126,128,132,135
%N A384349 Heinz numbers of integer partitions with no proper way to choose disjoint strict partitions of each part.
%C A384349 By "proper" we exclude the case of all singletons, which is disjoint when n is squarefree.
%C A384349 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%e A384349 The prime indices of 102 are {1,2,7}, which has proper disjoint choice ((1),(2),(3,4)), so 102 is not in the sequence.
%e A384349 The terms together with their prime indices begin:
%e A384349      1: {}           27: {2,2,2}        63: {2,2,4}
%e A384349      2: {1}          28: {1,1,4}        64: {1,1,1,1,1,1}
%e A384349      3: {2}          30: {1,2,3}        66: {1,2,5}
%e A384349      4: {1,1}        32: {1,1,1,1,1}    68: {1,1,7}
%e A384349      6: {1,2}        36: {1,1,2,2}      70: {1,3,4}
%e A384349      8: {1,1,1}      40: {1,1,1,3}      72: {1,1,1,2,2}
%e A384349      9: {2,2}        42: {1,2,4}        75: {2,3,3}
%e A384349     10: {1,3}        44: {1,1,5}        76: {1,1,8}
%e A384349     12: {1,1,2}      45: {2,2,3}        78: {1,2,6}
%e A384349     14: {1,4}        48: {1,1,1,1,2}    80: {1,1,1,1,3}
%e A384349     15: {2,3}        50: {1,3,3}        81: {2,2,2,2}
%e A384349     16: {1,1,1,1}    52: {1,1,6}        84: {1,1,2,4}
%e A384349     18: {1,2,2}      54: {1,2,2,2}      88: {1,1,1,5}
%e A384349     20: {1,1,3}      56: {1,1,1,4}      90: {1,2,2,3}
%e A384349     24: {1,1,1,2}    60: {1,1,2,3}      92: {1,1,9}
%t A384349 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A384349 pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
%t A384349 Select[Range[100],Length[pofprop[prix[#]]]==0&]
%Y A384349 The non-proper version appears to be A382912, counted by A383710.
%Y A384349 The non-proper complement appears to be A382913, counted by A383708.
%Y A384349 The complement is A384321, counted by A384317.
%Y A384349 These partitions are counted by A384348.
%Y A384349 These are the positions of 0 in A384389.
%Y A384349 The case of a unique proper choice is A384390, counted by A384319.
%Y A384349 A048767 is the Look-and-Say transform, fixed points A048768.
%Y A384349 A056239 adds up prime indices, row sums of A112798.
%Y A384349 A179009 counts maximally refined strict partitions, ranks A383707.
%Y A384349 A279790 and A279375 count ways to choose disjoint strict partitions of prime indices.
%Y A384349 Cf. A122111, A130091, A317142, A326080, A351294, A357982, A381454, A382525, A383706, A384320, A384322.
%K A384349 nonn
%O A384349 1,2
%A A384349 _Gus Wiseman_, Jun 03 2025