This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384350 #8 Jun 07 2025 16:45:56 %S A384350 0,0,0,1,4,13,33,81,183,402,856,1801,3721,7646,15567,31575 %N A384350 Number of subsets of {1..n} containing at least one element that is a sum of distinct non-elements. %C A384350 Conjecture: Also the number of subsets of {1..n} such that it is possible in more than one way to choose a disjoint family of strict integer partitions, one of each element. %e A384350 For the set s = {1,5} we have 5 = 2+3, so s is counted under a(5). %e A384350 The a(0) = 0 through a(5) = 13 subsets: %e A384350 . . . {3} {3} {3} %e A384350 {4} {4} %e A384350 {2,4} {5} %e A384350 {3,4} {1,5} %e A384350 {2,4} %e A384350 {2,5} %e A384350 {3,4} %e A384350 {3,5} %e A384350 {4,5} %e A384350 {1,4,5} %e A384350 {2,3,5} %e A384350 {2,4,5} %e A384350 {3,4,5} %t A384350 nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]]; %t A384350 Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@nonsets[#]]!={}&]],{n,0,10}] %Y A384350 The complement is counted by A326080, allowing repeats A326083. %Y A384350 For strict partitions of n instead of subsets of {1..n} we have A384318, ranks A384322. %Y A384350 First differences are A384391. %Y A384350 A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605. %Y A384350 A179009 counts maximally refined strict partitions, ranks A383707. %Y A384350 A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432. %Y A384350 A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433. %Y A384350 A383706 counts ways to choose disjoint strict partitions of prime indices, non-disjoint A357982, non-strict A299200. %Y A384350 Cf. A279375, A279790, A317141, A317142, A383708, A383710, A384317, A384319, A384320, A384321. %K A384350 nonn,more %O A384350 0,5 %A A384350 _Gus Wiseman_, Jun 05 2025