cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384352 Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)/6 * x)^((1/2)^(k+3)).

This page as a plain text file.
%I A384352 #10 May 27 2025 10:33:25
%S A384352 1,1,32,5392,2676188,2930633692,5993325199448,20540879727692152,
%T A384352 109337218761743017718,854254522610491562826582,
%U A384352 9378640254148405369808277352,139752461092050444767050922501096,2747716352285121538660626991038190636,69628008338488529846443753577404293410060
%N A384352 Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)/6 * x)^((1/2)^(k+3)).
%F A384352 G.f.: exp(Sum_{k>=1} A062208(k) * x^k/k).
%o A384352 (PARI) a262809(n, k) = sum(i=0, k*n, sum(j=0, i, (-1)^j*binomial(i, j)*binomial(i-j, n)^k));
%o A384352 my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, a262809(3, k)*x^k/k)))
%Y A384352 Cf. A084784, A384351, A384353.
%Y A384352 Cf. A062208, A262809.
%K A384352 nonn
%O A384352 0,3
%A A384352 _Seiichi Manyama_, May 27 2025