cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384353 Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)*(k+3)/24 * x)^((1/2)^(k+4)).

This page as a plain text file.
%I A384353 #12 May 27 2025 10:33:22
%S A384353 1,1,161,233201,1388333781,23407417517205,900363695229160325,
%T A384353 68584682130559722233525,9362104205577409136806214275,
%U A384353 2125938144923623062958782871506275,758178276483321320080629434392636915075,405630344408921348237973282862682052175313075
%N A384353 Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)*(k+3)/24 * x)^((1/2)^(k+4)).
%F A384353 G.f.: exp(Sum_{k>=1} A062205(k) * x^k/k).
%o A384353 (PARI) a262809(n, k) = sum(i=0, k*n, sum(j=0, i, (-1)^j*binomial(i, j)*binomial(i-j, n)^k));
%o A384353 my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, a262809(4, k)*x^k/k)))
%Y A384353 Cf. A084784, A384351, A384352.
%Y A384353 Cf. A062205, A262809.
%K A384353 nonn
%O A384353 0,3
%A A384353 _Seiichi Manyama_, May 27 2025