cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384357 Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)/6 * x)^((1/54) * (2/3)^k).

This page as a plain text file.
%I A384357 #11 May 27 2025 10:33:14
%S A384357 1,1,153,128793,319155321,1744213657689,17803590830142393,
%T A384357 304609764628470426969,8095576593110601916260369,
%U A384357 315845539893724747798646514673,17317064152543324914717101316522961,1288754843591816442932799782872809777393,126555732798742295186573610437899751882638209
%N A384357 Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)/6 * x)^((1/54) * (2/3)^k).
%F A384357 G.f.: exp((1/8) * Sum_{k>=1} A384362(3,k) * x^k/k).
%o A384357 (PARI) a384362(n, k) = sum(i=0, k*n, 2^i*sum(j=0, i, (-1)^j*binomial(i, j)*binomial(i-j, n)^k));
%o A384357 my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, a384362(3, k)*x^k/k)/8))
%Y A384357 Cf. A384362.
%K A384357 nonn
%O A384357 0,3
%A A384357 _Seiichi Manyama_, May 27 2025