cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384358 Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)*(k+3)/24 * x)^((1/162) * (2/3)^k).

This page as a plain text file.
%I A384358 #10 May 27 2025 10:33:18
%S A384358 1,1,1321,16210201,820657237561,117856012064818489,
%T A384358 38648527065793350391329,25112088578490906968072202609,
%U A384358 29248901038277816617484354852346429,56683882435365104654655753669402941927069,172551008002533192343018045442364399983107657925
%N A384358 Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)*(k+3)/24 * x)^((1/162) * (2/3)^k).
%F A384358 G.f.: exp((1/16) * Sum_{k>=1} A384362(4,k) * x^k/k).
%o A384358 (PARI) a384362(n, k) = sum(i=0, k*n, 2^i*sum(j=0, i, (-1)^j*binomial(i, j)*binomial(i-j, n)^k));
%o A384358 my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, a384362(4, k)*x^k/k)/16))
%Y A384358 Cf. A384362.
%K A384358 nonn
%O A384358 0,3
%A A384358 _Seiichi Manyama_, May 27 2025