cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384359 Expansion of Product_{k>=1} 1/(1 - k*(k+1)/2 * x)^((1/48) * (3/4)^k).

This page as a plain text file.
%I A384359 #8 May 27 2025 10:33:05
%S A384359 1,1,37,4453,1126375,489185863,324848377243,306044183298331,
%T A384359 388203452145317314,637855747987693348770,1317841032827800659419754,
%U A384359 3343784211346797764798294634,10221662989279986155378379955158,37051850653048390530321630384383382,157140052593846256021318451838028238910
%N A384359 Expansion of Product_{k>=1} 1/(1 - k*(k+1)/2 * x)^((1/48) * (3/4)^k).
%F A384359 G.f.: exp((1/9) * Sum_{k>=1} A384364(2,k) * x^k/k).
%o A384359 (PARI) a384364(n, k) = sum(i=0, k*n, 3^i*sum(j=0, i, (-1)^j*binomial(i, j)*binomial(i-j, n)^k));
%o A384359 my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, a384364(2, k)*x^k/k)/9))
%Y A384359 Cf. A384364.
%K A384359 nonn
%O A384359 0,3
%A A384359 _Seiichi Manyama_, May 27 2025