cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384360 Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)/6 * x)^((1/192) * (3/4)^k).

This page as a plain text file.
%I A384360 #10 May 27 2025 10:33:02
%S A384360 1,1,424,998584,6925040260,105920615923684,3026129933925315784,
%T A384360 144928319460945421096936,10782220800085014574469693026,
%U A384360 1177609713750570874317795178806210,180749886489278186545417627942230436008,37658177020555445685152123914054243838809128
%N A384360 Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)/6 * x)^((1/192) * (3/4)^k).
%F A384360 G.f.: exp((1/27) * Sum_{k>=1} A384364(3,k) * x^k/k).
%o A384360 (PARI) a384364(n, k) = sum(i=0, k*n, 3^i*sum(j=0, i, (-1)^j*binomial(i, j)*binomial(i-j, n)^k));
%o A384360 my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, a384364(3, k)*x^k/k)/27))
%Y A384360 Cf. A384364.
%K A384360 nonn
%O A384360 0,3
%A A384360 _Seiichi Manyama_, May 27 2025