cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384361 Consecutive internal states of the linear congruential pseudo-random number generator of the HP 48 series calculators when started at 999500333083533.

This page as a plain text file.
%I A384361 #17 May 28 2025 10:45:39
%S A384361 999500333083533,529199358633911,43582181444437,294922982088079,
%T A384361 41089642444893,284830972469031,786870433805477,40703079813759,
%U A384361 869103111377453,156083179654551,561556952003317,315753873725039,722319935785213,518159379358471,201897051493957,715330849773919
%N A384361 Consecutive internal states of the linear congruential pseudo-random number generator of the HP 48 series calculators when started at 999500333083533.
%D A384361 The initial 999500333083533 seed is the one used by the calculators after a memory clean; successive executions of the RAND command give the terms of this sequence (divided by 10^15 and truncated to 12 significant digits).
%D A384361 See links for more information.
%H A384361 Paolo Xausa, <a href="/A384361/b384361.txt">Table of n, a(n) for n = 1..10000</a>
%H A384361 John Meyers, <a href="https://groups.google.com/g/comp.sys.hp48/c/UbMwz6bGQmw/m/T8JTaWW0OeUJ">Random thoughts on HP48 random functions</a>, comp.sys.hp48 Google group, 1997.
%H A384361 Steve VanDevender and Detlef Mueller, <a href="https://www.hpcalc.org/hp48/docs/misc/rand.txt">How RAND Works</a>, hpcalc.org, 1992.
%H A384361 <a href="/index/Ps#PRN">Index entries for sequences related to pseudo-random numbers</a>.
%F A384361 a(1) = 999500333083533; for n > 1, a(n) = 2851130928467*a(n-1) mod 10^15.
%t A384361 NestList[Mod[2851130928467*#, 10^15] &, 999500333083533, 15]
%Y A384361 Cf. A384416 (starting at 1).
%Y A384361 Cf. other pseudo-random number generators: A096550-A096561, A381318, A382535, A383809, A384081, A384221.
%K A384361 nonn,easy
%O A384361 1,1
%A A384361 _Paolo Xausa_, May 27 2025