A384369 Numbers k such that Omega(k)^Omega(k) == Omega(k) (mod k) where Omega = A001222.
1, 2, 3, 5, 7, 8, 11, 12, 13, 17, 19, 23, 29, 31, 36, 37, 41, 43, 47, 48, 53, 59, 61, 67, 71, 73, 79, 80, 83, 84, 89, 97, 101, 103, 107, 109, 113, 120, 126, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 208, 211, 223, 227, 229, 233, 239, 241
Offset: 1
Examples
8 is a term because Omega(8)^Omega(8) = 3^3 = 27 == 3 (mod 8).
Programs
-
Magma
[k: k in [1..250] | (k eq 1 select 0 else &+[p[2]: p in Factorization(k)])^(k eq 1 select 0 else &+[p[2]: p in Factorization(k)]) mod k eq (k eq 1 select 0 else &+[p[2]: p in Factorization(k)])];
-
Mathematica
{1}~Join~Select[Range[2,241],Mod[PrimeOmega[#]^PrimeOmega[#],#]==PrimeOmega[#]&] (* James C. McMahon, Jun 04 2025 *)