This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384376 #9 May 30 2025 10:06:21 %S A384376 2,2,3,2,1,2,2,3,3,2,1,2,4,6,10,14,15,8,2,1,2,4,6,13,21,37,47,51,28, %T A384376 12,2,1,2,4,6,13,25,49,86,136,177,174,118,47,14,2,1,3,5,9,18,39,79, %U A384376 168,335,646,1147,1843,2548,2908,2420,1300,473,121,24,3,1,3,4,6,7,6,3,1 %N A384376 Irregular triangle read by rows: T(n,k) is the number of connected induced k-vertex subgraphs of the 1-skeleton of the n-th Johnson solid, up to symmetries of that solid; 1 <= n <= 92, 1 <= k <= A242733(n). %H A384376 Pontus von Brömssen, <a href="/A384376/b384376.txt">Table of n, a(n) for n = 1..638</a> (first 39 rows) %H A384376 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JohnsonSolid.html">Johnson Solid</a>. %H A384376 Wikipedia, <a href="https://en.wikipedia.org/wiki/List_of_Johnson_solids">List of Johnson solids</a>. %e A384376 Triangle begins: %e A384376 n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 %e A384376 ---+------------------------------------------------------------------------------ %e A384376 1 | 2 2 3 2 1 %e A384376 2 | 2 2 3 3 2 1 %e A384376 3 | 2 4 6 10 14 15 8 2 1 %e A384376 4 | 2 4 6 13 21 37 47 51 28 12 2 1 %e A384376 5 | 2 4 6 13 25 49 86 136 177 174 118 47 14 2 1 %e A384376 6 | 3 5 9 18 39 79 168 335 646 1147 1843 2548 2908 2420 1300 473 121 24 3 1 %e A384376 7 | 3 4 6 7 6 3 1 %e A384376 8 | 3 4 7 12 17 16 9 3 1 %e A384376 9 | 3 4 7 13 24 35 36 22 9 3 1 %e A384376 10 | 3 4 9 16 21 16 8 3 1 %e A384376 11 | 3 4 9 18 36 49 41 23 9 3 1 %e A384376 12 | 2 2 3 2 1 %e A384376 13 | 2 2 4 5 4 2 1 %e A384376 14 | 2 3 4 7 6 6 2 1 %e A384376 15 | 2 3 5 10 15 20 13 8 2 1 %e A384376 16 | 2 3 5 11 20 38 41 36 16 8 2 1 %e A384376 17 | 2 3 6 13 19 21 12 7 2 1 %e A384376 18 | 3 7 12 29 60 134 255 425 523 420 223 80 21 3 1 %e A384376 19 | 3 7 12 32 69 174 393 899 1856 3512 5517 6874 6173 3964 1789 615 146 30 3 1 %Y A384376 Cf. A242733 (row lengths), A384377 (row sums), A384378, A384380. %K A384376 nonn,tabf,fini %O A384376 1,1 %A A384376 _Pontus von Brömssen_ and _Peter Kagey_, May 28 2025