cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384380 Irregular triangle read by rows: T(n,k) is the number of connected subsets of k faces (or polyforms) of the n-th Johnson solid, up to symmetries of that solid; 1 <= n <= 92, 1 <= k <= A242731(n).

This page as a plain text file.
%I A384380 #7 Jun 01 2025 16:38:33
%S A384380 2,2,3,2,1,2,2,3,3,2,1,4,4,9,14,14,9,4,1,4,4,12,20,32,30,23,11,4,1,4,
%T A384380 4,13,29,54,75,75,55,31,12,4,1,5,5,17,43,118,285,595,992,1320,1348,
%U A384380 1045,603,262,86,22,5,1,3,4,6,7,6,3,1,3,4,7,12,17,16,9,3,1
%N A384380 Irregular triangle read by rows: T(n,k) is the number of connected subsets of k faces (or polyforms) of the n-th Johnson solid, up to symmetries of that solid; 1 <= n <= 92, 1 <= k <= A242731(n).
%C A384380 Two faces are connected if they share an edge.
%C A384380 Equivalently, T(n,k) is the number of connected induced k-vertex subgraphs of the 1-skeleton of the dual of the n-th Johnson solid, up to symmetries of that dual.
%H A384380 Pontus von Brömssen, <a href="/A384380/b384380.txt">Table of n, a(n) for n = 1..341</a> (first 24 rows)
%H A384380 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JohnsonSolid.html">Johnson Solid</a>.
%H A384380 Wikipedia, <a href="https://en.wikipedia.org/wiki/List_of_Johnson_solids">List of Johnson solids</a>.
%e A384380 Triangle begins:
%e A384380   n\k| 1  2  3  4   5   6   7    8    9   10   11   12   13  14  15 16 17 18
%e A384380   ---+----------------------------------------------------------------------
%e A384380    1 | 2  2  3  2   1
%e A384380    2 | 2  2  3  3   2   1
%e A384380    3 | 4  4  9 14  14   9   4    1
%e A384380    4 | 4  4 12 20  32  30  23   11    4    1
%e A384380    5 | 4  4 13 29  54  75  75   55   31   12    4    1
%e A384380    6 | 5  5 17 43 118 285 595  992 1320 1348 1045  603  262  86  22  5  1
%e A384380    7 | 3  4  6  7   6   3   1
%e A384380    8 | 3  4  7 12  17  16   9    3    1
%e A384380    9 | 3  4  7 13  24  35  36   22    9    3    1
%e A384380   10 | 4  4  8 15  28  47  81  102   87   45   16    4    1
%e A384380   11 | 4  4  8 17  35  71 139  252  378  429  340  183   67  18   4  1
%e A384380   12 | 1  2  2  3   1   1
%e A384380   13 | 1  2  2  5   6  10   7    5    1    1
%e A384380   14 | 2  3  5  7  10   9   6    2    1
%e A384380   15 | 2  3  5 11  19  31  38   38   20   10    2    1
%e A384380   16 | 2  3  5 11  23  45  82  126  154  130   77   30   10   2   1
%e A384380   17 | 2  3  4 10  16  35  61  120  180  237  194  117   40  13   2  1
%e A384380   18 | 6  7 17 36  81 165 300  386  337  197   82   25    6   1
%e A384380   19 | 6  7 20 44 121 290 701 1403 2359 3047 2975 2110 1106 435 131 31  6  1
%Y A384380 Cf. A242731 (row lengths), A384376, A384378, A384381 (row sums).
%K A384380 nonn,tabf,fini
%O A384380 1,1
%A A384380 _Pontus von Brömssen_ and _Peter Kagey_, May 28 2025