This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384390 #12 Jul 27 2025 18:03:21 %S A384390 5,7,21,22,26,33,35,39,102,114,130,154,165,170,190,195,231,238,255,285 %N A384390 Heinz numbers of integer partitions with a unique proper way to choose disjoint strict partitions of each part. %C A384390 By "proper" we exclude the case of all singletons, which is disjoint in the strict case. %C A384390 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A384390 The strict partition (7,2,1) with Heinz number 102 can only be properly refined as ((4,3),(2),(1)), so 102 is in the sequence. The other refinement ((7),(2),(1)) is not proper. %e A384390 The terms together with their prime indices begin: %e A384390 5: {3} %e A384390 7: {4} %e A384390 21: {2,4} %e A384390 22: {1,5} %e A384390 26: {1,6} %e A384390 33: {2,5} %e A384390 35: {3,4} %e A384390 39: {2,6} %e A384390 102: {1,2,7} %e A384390 114: {1,2,8} %e A384390 130: {1,3,6} %e A384390 154: {1,4,5} %e A384390 165: {2,3,5} %e A384390 170: {1,3,7} %e A384390 190: {1,3,8} %e A384390 195: {2,3,6} %e A384390 231: {2,4,5} %e A384390 238: {1,4,7} %e A384390 255: {2,3,7} %e A384390 285: {2,3,8} %t A384390 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A384390 pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&]; %t A384390 Select[Range[100],Length[pofprop[prix[#]]]==1&] %Y A384390 The non-proper version is A383707, counted by A179009. %Y A384390 Partitions of this type are counted by A384319, non-strict A384323 (ranks A384347). %Y A384390 This is the unique case of A384321, counted by A384317. %Y A384390 This is the case of a unique proper choice in A384322. %Y A384390 The complement is A384349 \/ A384393. %Y A384390 These are positions of 1 in A384389. %Y A384390 A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605. %Y A384390 A055396 gives least prime index, greatest A061395. %Y A384390 A056239 adds up prime indices, row sums of A112798. %Y A384390 A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432. %Y A384390 A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433. %Y A384390 A357982 counts strict partitions of each prime index, non-strict A299200. %Y A384390 Cf. A382912, counted by A383710, odd case A383711. %Y A384390 Cf. A382913, counted by A383708, odd case A383533. %Y A384390 Cf. A098859, A122111, A130091, A279375, A279790, A317142, A351201, A381454, A384005, A384320. %K A384390 nonn %O A384390 1,1 %A A384390 _Gus Wiseman_, Jun 02 2025