This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384392 #12 Jun 10 2025 16:26:24 %S A384392 1,1,2,2,4,6,7,10,14,20,24,33,41,55,70,88,110,140,171,214,265,324,397, %T A384392 485,588,711,861,1032,1241,1486,1773 %N A384392 Number of integer partitions of n whose distinct parts are maximally refined. %C A384392 Given any partition, the following are equivalent: %C A384392 1) The distinct parts are maximally refined. %C A384392 2) Every strict partition of a part contains a part. In other words, if y is the set of parts and z is any strict partition of any element of y, then z must contain at least one element from y. %C A384392 3) No part is a sum of distinct non-parts. %e A384392 The a(1) = 1 through a(8) = 14 partitions: %e A384392 (1) (2) (21) (22) (32) (222) (322) (332) %e A384392 (11) (111) (31) (41) (321) (331) (431) %e A384392 (211) (221) (411) (421) (521) %e A384392 (1111) (311) (2211) (2221) (2222) %e A384392 (2111) (3111) (3211) (3221) %e A384392 (11111) (21111) (4111) (3311) %e A384392 (111111) (22111) (4211) %e A384392 (31111) (22211) %e A384392 (211111) (32111) %e A384392 (1111111) (41111) %e A384392 (221111) %e A384392 (311111) %e A384392 (2111111) %e A384392 (11111111) %t A384392 nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]]; %t A384392 Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@nonsets[#]]=={}&]],{n,0,15}] %Y A384392 The strict case is A179009, ranks A383707. %Y A384392 For subsets instead of partitions we have A326080, complement A384350. %Y A384392 These partitions are ranked by A384320, complement A384321. %Y A384392 A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605. %Y A384392 A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432. %Y A384392 A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433. %Y A384392 Cf. A179822, A279375, A279790, A299200, A317142, A326083, A357982, A383706, A383708, A383710, A384317, A384318, A384319, A384391. %K A384392 nonn,more %O A384392 0,3 %A A384392 _Gus Wiseman_, Jun 07 2025