cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384393 Heinz numbers of integer partitions with more than one proper way to choose disjoint strict partitions of each part.

This page as a plain text file.
%I A384393 #8 Jun 03 2025 08:43:43
%S A384393 11,13,17,19,23,25,29,31,34,37,38,41,43,46,47,49,51,53,55,57,58,59,61,
%T A384393 62,65,67,69,71,73,74,77,79,82,83,85,86,87,89,91,93,94,95,97,101,103,
%U A384393 106,107,109,111,113,115,118,119,121,122,123,127,129,131,133,134
%N A384393 Heinz numbers of integer partitions with more than one proper way to choose disjoint strict partitions of each part.
%C A384393 By "proper" we exclude the case of all singletons, which is disjoint when n is squarefree.
%C A384393 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%e A384393 The prime indices of 275 are {3,3,5}, with a total of 2 proper choices: ((3),(2,1),(5)) and ((2,1),(3),(5)), so 275 is in the sequence.
%e A384393 The terms together with their prime indices begin:
%e A384393     11: {5}      51: {2,7}      82: {1,13}
%e A384393     13: {6}      53: {16}       83: {23}
%e A384393     17: {7}      55: {3,5}      85: {3,7}
%e A384393     19: {8}      57: {2,8}      86: {1,14}
%e A384393     23: {9}      58: {1,10}     87: {2,10}
%e A384393     25: {3,3}    59: {17}       89: {24}
%e A384393     29: {10}     61: {18}       91: {4,6}
%e A384393     31: {11}     62: {1,11}     93: {2,11}
%e A384393     34: {1,7}    65: {3,6}      94: {1,15}
%e A384393     37: {12}     67: {19}       95: {3,8}
%e A384393     38: {1,8}    69: {2,9}      97: {25}
%e A384393     41: {13}     71: {20}      101: {26}
%e A384393     43: {14}     73: {21}      103: {27}
%e A384393     46: {1,9}    74: {1,12}    106: {1,16}
%e A384393     47: {15}     77: {4,5}     107: {28}
%e A384393     49: {4,4}    79: {22}      109: {29}
%t A384393 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A384393 pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
%t A384393 Select[Range[100],Length[pofprop[prix[#]]]>1&]
%Y A384393 Without "proper" we get A384321 (strict A384322), counted by A384317 (strict A384318).
%Y A384393 The case of no choices is A384349, counted by A384348.
%Y A384393 These are positions of terms > 1 in A384389.
%Y A384393 The case of a unique proper choice is A384390, counted by A384319.
%Y A384393 Partitions of this type are counted by A384395.
%Y A384393 A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
%Y A384393 A055396 gives least prime index, greatest A061395.
%Y A384393 A056239 adds up prime indices, row sums of A112798.
%Y A384393 A239455 counts Look-and-Say partitions, ranks A351294 or A381432.
%Y A384393 A279790 and A279375 count ways to choose disjoint strict partitions of prime indices.
%Y A384393 A351293 counts non-Look-and-Say partitions, ranks A351295 or A381433.
%Y A384393 Cf. A382912, A383710, A382913, A383708, A383533.
%Y A384393 Cf. A179009, A357982, A381454, A382525, A383706, A383707, A384320, A384323.
%K A384393 nonn
%O A384393 1,1
%A A384393 _Gus Wiseman_, Jun 02 2025