This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384393 #8 Jun 03 2025 08:43:43 %S A384393 11,13,17,19,23,25,29,31,34,37,38,41,43,46,47,49,51,53,55,57,58,59,61, %T A384393 62,65,67,69,71,73,74,77,79,82,83,85,86,87,89,91,93,94,95,97,101,103, %U A384393 106,107,109,111,113,115,118,119,121,122,123,127,129,131,133,134 %N A384393 Heinz numbers of integer partitions with more than one proper way to choose disjoint strict partitions of each part. %C A384393 By "proper" we exclude the case of all singletons, which is disjoint when n is squarefree. %C A384393 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A384393 The prime indices of 275 are {3,3,5}, with a total of 2 proper choices: ((3),(2,1),(5)) and ((2,1),(3),(5)), so 275 is in the sequence. %e A384393 The terms together with their prime indices begin: %e A384393 11: {5} 51: {2,7} 82: {1,13} %e A384393 13: {6} 53: {16} 83: {23} %e A384393 17: {7} 55: {3,5} 85: {3,7} %e A384393 19: {8} 57: {2,8} 86: {1,14} %e A384393 23: {9} 58: {1,10} 87: {2,10} %e A384393 25: {3,3} 59: {17} 89: {24} %e A384393 29: {10} 61: {18} 91: {4,6} %e A384393 31: {11} 62: {1,11} 93: {2,11} %e A384393 34: {1,7} 65: {3,6} 94: {1,15} %e A384393 37: {12} 67: {19} 95: {3,8} %e A384393 38: {1,8} 69: {2,9} 97: {25} %e A384393 41: {13} 71: {20} 101: {26} %e A384393 43: {14} 73: {21} 103: {27} %e A384393 46: {1,9} 74: {1,12} 106: {1,16} %e A384393 47: {15} 77: {4,5} 107: {28} %e A384393 49: {4,4} 79: {22} 109: {29} %t A384393 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A384393 pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&]; %t A384393 Select[Range[100],Length[pofprop[prix[#]]]>1&] %Y A384393 Without "proper" we get A384321 (strict A384322), counted by A384317 (strict A384318). %Y A384393 The case of no choices is A384349, counted by A384348. %Y A384393 These are positions of terms > 1 in A384389. %Y A384393 The case of a unique proper choice is A384390, counted by A384319. %Y A384393 Partitions of this type are counted by A384395. %Y A384393 A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605. %Y A384393 A055396 gives least prime index, greatest A061395. %Y A384393 A056239 adds up prime indices, row sums of A112798. %Y A384393 A239455 counts Look-and-Say partitions, ranks A351294 or A381432. %Y A384393 A279790 and A279375 count ways to choose disjoint strict partitions of prime indices. %Y A384393 A351293 counts non-Look-and-Say partitions, ranks A351295 or A381433. %Y A384393 Cf. A382912, A383710, A382913, A383708, A383533. %Y A384393 Cf. A179009, A357982, A381454, A382525, A383706, A383707, A384320, A384323. %K A384393 nonn %O A384393 1,1 %A A384393 _Gus Wiseman_, Jun 02 2025